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pNMRsim 
This document describes a simulation program for solid-state NMR that is being developed in 

the Durham NMR group.  Before thinking about using the program, do read the section at the 

end which tries to put you off. VYY.MM.DD figures in the text indicate the “version” (labelled 

by date) when a particular feature / change was introduced (see also the –news output from 

pNMRsim). This document covers V15.08.13. 

Introduction 

The SIMPSON simulation package allows relative novices, or those who just don’t care about 

the working of numerical simulations, to perform challenging simulations using a fairly 

straightforward, quickly edited, input file.  This is much simpler and quicker than writing 

dedicated programs, even using specialist NMR libraries e.g. GAMMA, and (in most cases) 

this outweighs the performance penalties of using a general rather than bespoke program. 

That said, SIMPSON has some weaknesses, particularly in the area of large spin systems 

where SPINEVOLUTION is often used in preference.  

pNMRsim has taken the SIMPSON philosophy and developed it to tackle large problems 

efficiently: 

 The input file has the same basic syntax as the SIMPSON .in file. Some areas, however, 

have been significantly changed. For examples, pulse programs are represented at a 

relatively “high level”, allowing complex pulse programs to be expressed efficiently, 

reducing the requirement for underlying language support, and increasing the 

opportunities for optimisation.  

 The range of problems that can be handled efficiently is significantly extended (block 

diagonal Hamiltonians, spatially periodic Hamiltonians, phase transients and timing errors 

etc). 

 Coupled quadrupoles are handled correctly, although this “generalised quadrupole” code 

has not been exhaustively tested. 

Do note, however, that pNMRsim has been developed to tackle a particular range of systems 

and there are many areas, where SIMPSON and SPINEVOLUTION have particular 

functionality e.g. handling relaxation, which pNMRsim does not attempt to provide. 

Input file format 

Like SIMPSON, pNMRsim uses a plaintext input file which conventionally has the file 

extension .in (although it is not obliged to do so).  Lines with # as the first character are 

treated as comments and are discarded.  At the next step up from this level lies the overall 

structure of the input files, which consists of “blocks” of the form 

<block name> { 

<instructions> 

} 

 

The blocks, if present, must be in the order 

spinsys  Sets up the system Hamiltonian.  This can be omitted when the FID/spectrum is 

being synthesised explicitly e.g. with addsignals.   

par  Sets up the remaining definitions used in later blocks: simulation parameters, pulse 

sequence elements etc. 

pulseq*  Optionally defines the nature of the pulse sequence e.g. pulses applied before 

detection
1
.  If omitted, this defaults to acq i.e. acquire NMR signal.  It cannot be present if 

a spinsys block was not included. 
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initialproc*  Optionally defines any processing to be applied to the raw NMR signal, 

before summation of individual transients
2
. (Removed in V11.06.14 to enable better 

parallelisation; restored in V12.08.02). 

proc* Defines the processing applied to the accumulated NMR signal.  If omitted, the 

FID/spectrum is saved with a filename derived from the .in file. 

optimise (V12.08.02) Additional optimisation instructions. 

finalise* Optional instructions to be executed when pNMRsim terminates.  

If an unexpected block name is encountered, it is assumed to be an “include” definition 

(see below).   

Blocks marked * can be used multiple times.  This allows different spectra and different 

processing to be applied to different rows of a complete data set, which is particularly useful 

when fitting multiple data sets simultaneously. 

Although the format of the input file is closely related to SIMPSON, there a major difference; 

SIMPSON in effect provides a custom programming language for expressing NMR 

experiments (via the underlying Tcl).  In contrast the pNMRsim input format provides a 

“description language” in which the problem is fully defined by the time the simulation 

begins.  Hence there is a (fairly) strict “unique definition” rule: the value/values of a quantity 

are determined when first defined and cannot be changed subsequently.  This significantly 

limits the degree of “programmability”, but makes it much easier for pNMRsim to 

“understand” the structure of the problem. 

Each of the standard blocks is considered in turn below.  The syntax and usage of most 

commands closely follows SIMPSON and are only briefly outlined below.  Refer to the 

SIMPSON paper for fuller descriptions.  Instructions or additional arguments that are only 

present or work very differently in pNMRsim are shown in bold. 

spinsys 

This block defines the nuclear spin system and the “spectrometer” (e.g. RF channels).  After 

parsing this block, pNMRsim has all the information required to construct the spin 

Hamiltonian and understand its block structure. 

The initial lines should contain 

proton_frequency <freq>* optional specification of 
1
H Larmor frequency e.g. 

proton_frequency 500e6 for a 500 MHz spectrometer
3
.  

usernucleus <name> <name>|(<I> (<freq>|<gamma> -gamma))  defines a new 

nucleus type with the quantum number and magnetogyric ratio specified either using an 

existing nucleus name e.g. 13C, or with an explicit quantum number and Larmor 

frequency / gamma value (in T
–1

 s
–1

).  The proton frequency must have previously been 

defined in the former case.  Because the interactions between nucleus with different types 

are always treated as heteronuclear, defining a new nucleus type in terms of an existing 

one is useful for grouping spins that can be considered as weakly coupled from other 

groups of spins and can be selectively irradiated e.g. usernucleus CO 13C would 

allow spins of type CO (e.g. carbonyl carbons) to be addressed with a separate RF channel.      

spinsys <nucleus>+ (+ denotes “1 or more of”) e.g. spinsys 1H 13C defines a two 

spin system with spin 1 being a 
1
H and spin 2 a 

13
C.  Spins are numbered from 1.  The 

nucleus identity is primarily used to distinguish nuclei types and to determine Larmor 

frequencies.  In the case of half-integer quadrupolar nuclei, the tag “:c” can be used to 

restrict the states
4
 considered to the central transition only (V09.01.03), e.g. 11B:c.  This 

greatly speeds up the calculation, at the expense of including the satellite transitions.  

One particular feature of pNMRsim is the ability to handle systems with spatial periodicity.  

This is specified using 
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cells n+ specifies a periodic geometry in terms of the number of “unit cells” along 1 to 3 

spatial dimensions e.g. cells 5 corresponds to a one-dimensional geometry of 5 cells, 

cells 2 3 declares a system of 2 by 3 cells etc.  Unless disabled by –

disable:periodic (see below) or the support is missing in your version of 

pNMRsim, the presence of cells will allow the Hamiltonian to be further block 

diagonalised, greatly improving the efficiency of calculation.  

One the spin system has been specified, the various NMR interactions can be added: 

shift n <iso> [<CSA> <> [  ]] specifies the chemical shift of spin n in terms 

of the isotropic shift, anisotropy and asymmetry of CSA and the Euler angles defining the 

orientation of the CSA with respect to the crystal orientation (these default to 0 0 0 if 

omitted). Angles are always expressed in degrees, while the units of frequencies, such as 

the isotropic shift and CSA, are Hz. Note that n must be within the range of the “unit cell” 

as it is impossible for chemical shifts to differ between cells.  Alternatively shifts may be 

specified in ppm by including a trailing p e.g. shift 1 1p would specify an isotropic 

shift of 1 ppm. The NMR frequency must have been previously specified using 

proton_frequency.  

dipole n m <coupling> [<>|  ] sets a dipolar coupling between spins n and m 

accompanied by an effective asymmetry (for liquid crystal NMR) or a set of Euler angles 

defining the orientation of the internuclear vector with respect to the crystal frame of 

reference.  Inter-cell couplings are specified when one (but not both) of the spin indices 

lies outside the unit cell.  So if there are m spins in the unit cell dipole 1 m+1 … sets 

the coupling between spin 1 of the base unit cell and spin 1 of its next nearest neighbour.  

Alternatively the syntax n,cell  (e.g. 1,1) can be used.  The coupling network must be 

properly periodic for the calculation to be valid, and an error is generated showing which 

couplings do not match if this is not the case. 

A warning is generated if the dipolar coupling appears to have the wrong sign (based on 

the signs of the magnetogyric ratios). This check is not always appropriate e.g. when 

dealing with motionally averaged couplings and can be disabled with –nochecks.  

jcoupling n m <iso> [<aniso> <> [  ]] sets a J coupling between spins n 

and m.  The anisotropic component of J (which is normally negligible in comparison to 

dipolar couplings) can be omitted.  

quadrupole n <order> <aniso> <> [  ] sets the quadrupole coupling for spin 

n.  The order can be 0, 1 or 2: 1 corresponds to a first order calculation, 2 uses second-

order perturbation theory while 0 does an “exact” calculation which copes with arbitrarily 

large quadrupoles.  The coupling to quadrupolar nuclei should be handled correctly, but 

non-first order quadrupoles have not been fully tested.  Calculations with non-secular 

Hamiltonians are also much slower and should always be avoided if possible. 

 By default, 2nd order effects are implemented “classically” and are restricted to isolated 

(single) quadrupolar spins.  When dealing with multiple spins and second-order 

quadrupoles, one of two treatments must be explicitly enabled: -

enable:generalisedQ to enable the experimental general treatment or –

enable:classicQ to force the “classic” treatment which does not handled transferred 

quadrupole effects (and should return the same results as SIMPSON). Whichever 

algorithm is used, subtle features (such as Berry’s phase effects) will be missed when 

pushed e.g. quadrupole couplings that are comparable to the Larmor frequency or spinning 

rate, and the use of RF with anything other than first-order quadtupoles also raises 

warnings. 

 

The default nucleus properties (compile-time option in V15.08.13) are taken, like SIMPSON, 

from the 2001 IUPAC values published by Harris et al. Previous versions used a slightly 

smaller subset of older values as used by the GAMMA libraries. pNMRsim –version will 
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now show HarrisIUPAC for “Nuclear spin properties”. This item is missing (corresponding 

to the original values) in previous versions.    

The asymmetry of tensor interactions is specified by default in terms of the  parameter.  

Alternatively the syntax <aniso> -xy <xx–yy> can be used to specify it in terms of the 

difference between xx and yy tensor components (V08.03.01).  Care is needed when fitting 

asymmetry parameters that are close to the limits of zero and one, since convergence at a 

constrained limit can be very slow.  Fitting in terms of the unconstrained xx–yy parameter can 

be useful here, with the risk that the solution found may fall outside the asymmetry parameter 

limits i.e. the xx, yy, zz components are incorrect. 

Note that the “Haeberlen-Mehring-Spiess” convention for the ordering of tensor principle 

components is used by default for all interactions. This follows the practice of programs such 

as SIMPSON and SPINEVOLUTION, but other software may use different conventions, 

which will typically affect the interpretation of the Euler angles. This can be over-ridden 

using: 

tensorodering <interaction>+  [-Haeberlen|-NQR] (V15.08.13) which sets the 

ordering convention for subsequent interactions of a given type e.g. tensorordering 

quadrupole –NQR would mean that all following quadrupole definitions used the 

component ordering commonly used in NQR. If the final argument is omitted, the current 

setting for the specified interactions is displayed. Conventions can be mixed by a given type, 

but are fixed for a given interaction when it is created.   

Whole tensor definition (V08.12.18): defining tensors in terms of separate components is 

cumbersome if it is necessary to perform computations on the complete tensor.  Alternatively 

tensors may be specified using an ordered six component list containing the isotropic value, 

anisotropy, asymmetry and the three Euler angles.  Hence dipole 1 2 [0,1000,0,0,0,0] would 

specify a dipolar coupling of 1000 Hz between spins 1 and 2.  The –xy flag can be added to 

denote that the asymmetry is being defined in terms of xx–yy.  However, values must be 

specified in Hz and not ppm.  This “whole tensor” formulation is particularly useful if using 

an external program to perform tensor calculations e.g. motional averaging e.g. dipole 1 

2 `myprogram <arguments>`.  

User defined interactions can be added using usershift <name> and usercoupling 

<name> respectively, allowing additional shifts and couplings to be specified for a given spin 

/ spin pair.  This is useful in solid systems where interactions such as the CSA and ABMS at a 

site will in general have different orientations and so cannot be merged into a single 

anisotropic shift.  User-defined shifts and couplings are input in the same format as shift 

and jcoupling respectively e.g.  

usershift ABMS 
ABMS 1 0.1p 1p 0 0 20 0 

   

truncate <interaction>+  indicates that the listed coupling interactions should be treated 

as “weak” i.e. non-secular components ignored even for homonuclear coupling e.g. 

truncate jcoupling.   Although the dipole interaction can be truncated, this would 

only be appropriate in very weakly ordered solutions.   

The following instructions are used to define the “spectrometer”: 

channels <nucleus>+ lists the active RF channels e.g. channels 1H.  It can be omitted 

if no RF is active (difference from SIMPSON).  This should be used sparingly as the 

presence of an RF channel indicates prevents block-diagonalisation for that nucleus type, 

slowing the calculation. A dummy channels directive can be useful to explicitly indicate 

which nuclei should not be subject to blocking in cases where pNMRsim has not been able 

to determine the block structure.  
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transients automatic|manual <amp1> … enables simulation of the effect of RF 

phase transients.  The effect of out-of-phase transients is simulated using a pair of counter-

rotating ideal tip pulses either side of any (soft) RF period (ideal pulses are, by definition, 

not subject to phase transient effects).  If, as is commonly assumed, transient effects are 

“linear”, then in-phase (“amplitude”) phase transients can be neglected to a good 

approximation.  The amplitude parameter specifies the tip angle (degrees) per kHz of RF 

nutation frequency e.g. 0.1 would give a 5° phase transient with 50 kHz RF cf. A. J. Vega, 

J. Magn. Reson. 170, 22 (2004).  These are specified individually for each of the channels 

(in order).  In the automatic mode, the phase transients are applied automatically to 

each (soft) pulse unless the transient amplitude is fixed at zero for the channel.  In 

manual mode, the presence of transients in specified on individual pulses using the –

transients flag in the pulse definition. 

 This model is rather crude and a better, if much slower, alternative is to use the 

expandtrans functions in the fulltrans.inc include file to model the actual 

transients for phase-modulated sequences.    

 

par 

The par block sets up all the information required for the simulation apart from the actual 

pulse sequence (defined in pulseq).  The allowed instructions are summarised below (see 

SIMPSON documentation for fuller descriptions / examples). 

autoopt <stop> 

[powderquality|maxdt|maxjumpdt|gamma_angles|chebyshev_iterat

ions]* [-reset] 

allows optimal values for parameters such as the number of crystallite orientations 

required for effective powder averaging to be determined empirically.  One or more 

parameters are optimised by “incrementing” the parameter (increasing “quality” and time 

required) until the results of successive calculations are indistinguishable within the 

<stop> parameter.  This is specified as the norm of the deviation divided by the norm of 

the “signal” i.e. a value of 0.001 corresponds to one part in a thousand.  Good convergence 

is important when fitting, since gradient methods in particular may become unstable if the 

calculations are too rough and ready.  The starting point of each optimisation is the value 

specified in the par block.  By default the optimised value of the associated parameter is 

used in the following calculations unless the –reset flag is specified in which case it is 

reset to the initial value e.g. autoopt 1e-4 powderquality gamma_angles –

reset will find optimal values for the powder quality and gamma angles independently.  

More than one autoopt directive can be given e.g.  

autoopt 1e-4 gamma_angles 
autoopt 1e-5 powderquality 

would first optimise the number of gamma angles and then the powder quality (using the 

previously determined optimal gamma angles).  autoopt runs can be performed in 

advance of any type of calculation. 

cache_limit [<limit>] sets a limit (in M) on the memory that can be used to store 

propagators
5
 (default is 50 M).  Without an argument, the current limit is displayed.  

Certain algorithms may work more efficiently if this limit is raised, but raising it too far 

will result in heavy “swapping” of memory and a rapid degradation of performance.  The 

global –nocache option disables cacheing and so is essentially equivalent to 

cache_limit 0. 

chebyshev_iterations <n> sets the number of iterations to use in Chebyshev 

propagation (MAS problems only, default 9).  This parameter will interact with maxdt in 

the sense that more iterations will be required with coarser time steps.  The time taken for 
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propagation calculation will be approximately proportional to n (and inversely 

proportional to the maxdt step). 

crystal_file <name> [-sphere|-hemisphere|-octant] [-start|-

middle|-end|-both] sets up the powder averaging (defaults to  single orientation if 

unspecified).  Allowed values for <name>  are: zcwN where N is the number of 

orientations (like SIMPSON).  Alternatively zcw:S can be used to specify a set number S.   

3zcwN or 3zcw:S specifies a 3-angle integration set determined using the ZCW 

algorithm
6
, in terms of either a number of orientations or a set number respectively.  Valid 

numbers for the ZCW sets are given in an error message if N is not a recognised value.  

betaN corresponds to N regularly spaced  angles ( fixed at 0).  alphabetaNa,Nb 

gives Na regular steps in the  and Nb regular steps in . If <name> is in {} brackets e.g. 

{zcw:8}, then the powder orientation becomes an arrayed variable i.e. a 2D array will be 

produced with rows corresponding to different orientations
7
. 

The flags modify the ranges and details of the sampling.  The range qualifiers sphere 

(default), hemisphere, octant, allowing the range of spherical angles to be restricted.  

This allows for more efficient powder averaging (especially for octant), but only 

possible if the Hamiltonian has sufficiently high spatial symmetry).  Unless checks are 

disabled, Hamiltonian will be tested for the required symmetry before the calculation 

starts.  The other flags control the exact range of the  Euler angle.  If –both is specified, 

the initial  value is 0 (pole) and the final value is  (other pole) or /2 (equator); -start 

begins at 0, but does not include the maximal value; –end uses the same step but includes 

the maximal value and not the minimal value; –middle (default) offsets the angle by half 

step size to avoid both limits.  Note that the angular step for –both is larger than for the 

other options.  SIMPSON seems to use the equivalent of –start while the default 

pNMRsim is –middle i.e. avoiding the pole whose weighted contribution to the signal is 

zero (for most sampling schemes).   The  angle always starts at zero and does not include 

2 (like –start) unless the –octant range is used in which case the same method is 

for both   and .    

single <alpha> <beta> <gamma> specifies a single crystal orientation.  The 

NMR response can be sampled at different specified orientations using an {} array e.g. 

single {0:10:90}:1 {0:10:90}:2 0 would be equivalent to 

{alphabeta10,10} –octant –both. 

If name is not recognised, an attempt is first made to read name (from the current 

directory) as a simple ASCII file.  This should contain 3 or 4 columns depending whether 

just ,  angles are being specified, or all three (the final column is the weighting factor).  

If name is not found, the SIMPSON-format “crystal orientation” file name.cry is 

attempted (,  averaging only).  No range qualifiers can be applied in this case (or for 

single). 

detect_operator <product operator expr>*  determines which coherences are 

measured when the signal is detected e.g. detect_operator Fx to detect x 

magnetisation.   See below for more information on product operator expressions.  If the 

spin system is homonuclear, detect_operator defaults to Fp (i.e. +1 coherence).  

By specifying an array of operator expressions, the detection operator can be changed from 

row to row e.g. detect_operator {Fx,Fy} or detect_operator  

cos($phase)*Fx+sin($phase)*Fy.  Such non-fixed operators  limit the scope for 

optimisation and should only be used when absolutely necessary. 

echo <output> outputs the rest of the line
8
 to the display or log_file (if defined), 

after substituting any $ variables (use \$ to include a $ character in the output).  This is 

useful for outputting information about the state of the program, or commenting other 

output e.g. from putmatrix.  An empty line is printed if <output> is empty. 
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eigenvalue <n> restricts the calculation to eigenvalue n.  This is only significant for 

systems with translational symmetry in which n refers to the k eigenvalue from 0 to N–1 

where N is the number of unit cells. 

filter <name> <coherence lists>  is a shortcut for matrix set <name> coherence 

<coherence lists>. 

gamma_angles n*  number of integration steps for  powder angle.  This only relevant to 

simulations involving sample spinning.  If gamma_angles is unset, a single value set by 

gamma_zero is used (a warning will be generated if neither gamma_zero or 

gamma_angles has been set explicitly).  Obviously gamma_angles should not be set 

if the powder averaging already includes .  Note that in cases where gamma angle 

integration must be done explicitly (when the “-COMPUTE” algorithm cannot be used, it 

is generally better to use a 3 angle integration set rather than set gamma_angles. 

gamma_zero  *  “zero” value for  powder angle (defaults to 0).  This effectively sets the 

rotor phase at 0t  for spinning experiments.  gamma_zero is used as an offset on any 

explicit  angle integration.  

histogram is used to set the parameters for frequency-domain based acquisition.  Multiple 

histogram commands can be used to set different parameters of the spectral accumulation: 

histogram [<threshold>] [-fold] sets the histogram mode and an optional 

folding flag.  The threshold, if specified, sets the minimum intensity to be included in the 

histogram.  This is particularly useful in the more computationally expensive lineshape 

mode (see below) for discarded transitions of trivial intensity.  If –fold is specified then 

frequencies that fall outside the spectral width are folded back into spectrum (otherwise 

they are discarded).  (N.B. Calculations that proceed via the calculation of propagators 

intrinsically fold frequencies into a spectral width defined by the sampling rate, so this 

distinct behaviour of time vs. frequency based propagation will only be visible for static 

Hamiltonians in the absence of RF). 

histogram log_file <filename>|- [<threshold>] [-double|-binary|-

real|-append] causes the transition amplitudes and frequencies to be streamed to a 

specified log file (or the standard output is used if the filename is specified as -).  Output 

can be limited to transitions with non-trivial intensities by specifying a threshold for the 

transition amplitude (this has no effect on the spectral histogram).  The format is ASCII by 

default, but can be set to single precision or double precision binary using the -double 

and -binary flags.   This file is intended for temporary output and the binary format will 

not be portable.  The –real flag discards the imaginary component on output. The –

append option (V11.06.14) will append the data to an existing file rather than 

overwriting. The file may have been generated by log_file instructions earlier in the 

par block, but the data must have been written out and the file closed before the 

histogram log_file command.  

histogram range <min> <max> restricts the frequency range to be accumulated 

using minimum and maximum frequencies to be included
9
 (rather than the default of the 

full spectral width).  Range restriction is incompatible with the –fold option.  This range 

information (rather than the setting of sw) is used for the spectral width and frequency 

origin when creating the data set prior to processing (V11.06.14).  

histogram lineshape <linewidth> [<Guassian fraction> 

[<steps> [<cutoff>]]] allows the histogram to be accumulated using finite width 

Lorentzian/Gaussian lineshapes of a specified width and L/G fraction.  Unlike the normal 

histogram mode where frequencies must be rounded to the nearest bin, finite width 

lineshapes may be positioned more accurately i.e. the peak maximum can lie between 

histogram bin centres.  Note that spectral frequencies outside the histogram range are 

always discarded even if part of the lineshape would lie within range. <steps> specifies 

the number of steps into which each frequency bin is effectively divided (5 by default).  
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Particularly as complete lineshapes are being used, there is little improvement on 

increasing the resolution beyond this–the effects will be negligible unless the histogram 

binning is extremely coarse.  The cutoff (zero by default) specifies a cutoff intensity (as 

a fraction of the lineshape maximum) in the lineshape function.  Using a high cutoff will 

lead to faster histogram accumulation, but will leave unphysical “steps” in the spectrum 

where lineshapes have been truncated.         

log_file <filename> [-ascii|-matlab|-double|-append] causes further 

output from echo and putmatrix to be streamed to the specified file.  The format is 

either Matlab (default) or plain ASCII text.  In the case of Matlab output, item names are 

tagged with “_n” where n is an index incremented from 1, for 1D data sets.  The tag 

“_r_n” is used if the output is 2D (i.e. has more than one row), where r is the row index 

(from 1).   log_file is not compatible with multi-processors simulations, since it is 

difficult to merge the outputs into a useful single stream.  The double flag forces full 

double precision output (single precision is used by default to save space).  log_file 

closes any current output stream, and log_file without arguments closes the current log 

and further output is sent to screen.  This allows more than one output file to be created, 

although only one file can be active at a time.  The –append is used to add logging 

output to an existing file.  This can always include a file created with save which is 

useful for adding comments / information to Matlab format output.   

matrix set <name> (coherenceorder ([<indices>] <coherence 

orders>)*|<product operator expr>|general <matrix elements>|spinorder 

([<indices>] <spin orders>)*)  is used to set up “coherence mask matrices” for 

subsequent use with filter, or to evaluate a product operator expression e.g. for 

subsequent output with putmatrix. <name> is not restricted to being a number (e.g. 

matrix set filter90 coherenceorder [-1,1]). The definition of 

coherence masks differs from SIMPSON: totalcoherence is not supported (as this 

doesn’t have a clear physical significance) and the coherence selection is specified with 

a list of coherences for each RF channel e.g. coherence [1,-1] [2,0,-2].  Note 

that [] brackets are used here and elsewhere for lists, not {} (as in SIMPSON).  

 general <matrix elements>* (V09.03.10) sets up a general square real or complex 

matrix e.g. for use in exchange.   Matrix elements are supplied in column order and, for 

complex matrices, as alternating real and imaginary components e.g. [0,1,1,0] and 

[0,0,0,–1,0,1,0,0] would create the following 2 x 2 matrices: 

 

 

 

 The contents of the matrix element vector do not have to be fixed, allowing the matrices to 

change over a simulation. 

 spinorder <spin orders> | <indices> <spin orders>  … (V11.12.21) creates filter 

matrices as coherence but based on spin order rather than coherence, where spin order 

is defined as the number of spins that change state between the bra and ket of a coherence 

(note that spin order is currently only defined for pure spin-1/2 spin systems). The spin 

orders argument determines which spin orders are selected (as a [] list or a single value), 

while the optional indices argument selects which spins are involved (all spins if argument 

is omitted) e.g. spinorder Indicesof(’1H’) [4,5] would set up a filter for spin 

orders 4 and 5 involving coherences between the 
1
H spins of a system. Further index and 

spin order lists (V12.03.27) can be used to specify heteronuclear spin orders e.g. 

spinorder Indicesof(’1H’) 5 Indicesof(’13C’) 1  would select for a 

spin order of 5 on the 
1
H spins and 1 on the 

13
C. A warning is given if the sets of spins 

overlap as this is likely to be an error. 
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 coherenceorder <coherence orders> | <indices> <coherence orders>  … 

(V13.08.08) works as spinorder but selects coherence orders rather than spin orders 

(and is not restricted to spin-1/2 systems). It replaces the previous flawed definition 

mechanism using coherence. totalcoherence can be used, as in SIMPSON, as a 

synonym for the case when only total coherence orders are being specified.    

maxdt t * sets the “integration time step” when working with time-dependent (i.e. 

spinning) Hamiltonians (defaults to 1 s).  Like all time quantities, the units are s.    

maxjumpdt jump    sets the maximum time step when propagating the Hamiltonian using a 

fast, but more approximate, algorithm for evaluating propagation under simultaneous RF 

and MAS that are not well synchronised (associated with the phasemodulation 

optimisation).  This is disabled by default (i.e. 0) and only enabled by setting a non-zero 

jump time. jump  should never be larger than the appropriate t  for a problem, and it is 

advisable to verify convergence of results with respect to this parameter. Take care with 

this functionality–it can easily give strange results!   

ni n <skip> sets the number of t1 increments in a 2D experiment.  t1 is only incremented 

every skip “scans” (e.g. 2  per hypercomplex acquisition), so the total number of points in 

the indirect dimension is the product of n and skip.  Note that setting ni changes the way 

the arrays are interpreted (see below). 

np n* sets the number of points in the indirect dimension (frequency or time domain 

propagation).  Calculation time will increase with np for time-domain calculations 

(dramatically so if the calculation is “asynchronous”), but not for frequency domain 

calculations where it simply sets the number of histogram bins. 

n<dimension>  sets the number of points in indirect dimension n (from 1).  See later section 

for details on n-D data sets. 

precision n [<m>] [–complexpair|-complexi|complexcompact] uses n 

significant figures in all subsequent floating point output.  If the two argument form, the 

accuracy of general floating point output and of matrix output   can be specified 

individually, with <m> setting the accuracy of matrix output.  If m is zero, then matrices 

are printed in compressed form with . and X representing zero and non-zero elements 

respectively (useful for examining matrix structure in large problems).  A value of –1 

indicates that the current setting should be preserved. The option argument (V11.12.21) 

modifies the way complex numbers are displayed: (R,I) for complexpair (default), R+iI 

for complexi (R and I always displayed), R+iI but omitting R or I if zero for 

complexcompact. 

 The NMRSIM_FORMAT (V10.11.04) environment variable can be used to obtain finer 

control over the formatting used when converting numeric variables to formatted 

quantities e.g. when $spin_rate is used in a filename.  This a C-style formatting string 

for floating point numbers (see the manual page for the printf function) without the 

leading % character e.g. f will used a fixed number of figures / decimal places, g is the 

“general” style. If a * is present in the string, the precision value is passed as an  argument.  

For example, the default formatting if not overridden by  NMRSIM_FORMAT is .*g which 

gives numbers in the “general” format to precision figures, while a setting of .4f would 

output numbers with fixed number of digits (4).          

 

propagation_method diagonalise | chebyshev sets the method used to 

calculate propagators from time-dependent Hamiltonians between diagonalisation of the 

Hamiltonian (default), Chebyshev propagation or switching between methods depending 

on the sparsity of the Hamiltonian.  In general, Chebyshev propagation is more efficient 

when the matrices are sparse, while diagonalisation is more effective for dense matrices.   
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pseudohistogram behaves like histogram in the sense that the NMR signal is 

calculated via transition amplitudes and frequencies, as opposed to normal “time domain” 

methods that explicitly propagate the density matrix via propagators, except that the 

transitions are accumulated into an FID rather than a frequency domain histogram. This 

mode is often faster than normal time domain propagation but less efficient than 

histogram.  It avoids the rounding issues that can affect direct histogram accumulation, but 

shares the same issues with numerical stability, hence it is not default behaviour.          

pulse, pulseid are described in the “Defining pulse sequences” section. 

putmatrix <name> outputs a matrix / Hamiltonian.  <name> can be start, detect, 

hamiltonian, density10, or the name of a matrix previously created with set.  If a 

log_file has been defined, the matrix is streamed to the specified file, tagged with the 

name of matrix (Matlab format only). 

rotor_angle <angle>  sets the angle of the rotor axis with respect to the magnetic field 

(defaults to the magic angle). 

sideband <n> restricts the calculation in MAS problems to sideband n (where 0 is 

centreband).  This can often be used to pick out a specific sideband, but obviously has little 

physical significance.   Note that the distinction between sidebands is not necessarily clear 

cut if the spin rate is not sufficiently high. 

spin_rate r *  sets the sample spin rate.  

start_operator <product operator expr>*  sets the initial density matrix, 0  e.g. 

start_operator Fx.    If the spin system is homonuclear, start_operator can 

be omitted and defaults to Fz (i.e. z magnetisation) if any pulses are used in pulseq or 

Fx (x magnetisation) otherwise.  Like detect_operator, the product operator 

expression need not be fixed. 

steps_per_rotation <n>  specifies the timestep used when integration the evolution 

for time-dependent problems in terms of the number of integration steps per rotor period 

i.e. the integration timestep is no longer than the rotor period divided by n.  This is an 

alternative (for MAS problems only) to setting the integration time step explicitly using 

maxdt. 

sw <width>* sets the direct dimension spectral width.  In the case of time domain 

propagation (the default), the dwell time should be “synchronised” with the other time-

dependencies such as RF pulses and sample spinning for maximum efficiency.  This 

restriction does not apply to frequency domain propagation.  Note that for time domain 

propagation, frequencies outside this spectral width are unavoidably aliased (folded) back 

into the spectrum (whereas they would be removed by filtration on the spectrometer).  See 

histogram for information on how out-of-range frequencies are handled in frequency 

domain propagation. 

sw<n> <width>  [<sfrq>] sets the spectral width for indirect dimensions, sw1 for the first 

indirect dimension, sw2 for the next etc..  The evolution in indirect dimensions is always 

calculated using time domain propagation of the density matrix.  Hence synchronisation is 

helpful, although the efficiency gains will tend to be less noticeable in comparison to the 

direct dimension.  The optional sfrq parameter was removed in V11.06.14 in favour of the 

set directive in proc.  

tolerance <dt> sets the timing “tolerance” (default 0.005 i.e. 5 ns).  This is in effect the 

time difference over which two times are taken to be different in pulse sequences.  

Similarly transient effects “older” than this period are assumed not to have an effect on 

subsequent evolution.  Obviously it is then important not to have pulse sequence elements 

shorter than (or equal to) this time period, and event times should generally be much 

larger.  This can be used to overcome synchronisation problems due to rounding errors.  
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Inserting a delay greater than <dt> is also a useful way to tidy up any lingering phase 

transients.   

variable  is used to define new variables (see below). 

verbose –optimise -general –parse -powder -profile  Aspects to be 

reported on are specified by flags referring to: fitting/optimisation, general operation, 

parsing (only useful to debugging), powder orientation.  If no flags are given, all verbose 

output is enabled.  –profile enables basic profiling.  At the end of the calculation, the 

time spent in the different steps of pulseq and processing are displayed together with 

memory usage information from different levels. 

 

The following SIMPSON functions are either redundant or not implemented in pNMRsim: 

method, pulse_sequence, offset, select, turnoff, turnon, 

getinteractions. 

 

Defining pulse sequences 

In pNMRsim, RF pulses and delay periods are assembled in the par block into named 

“sequence fragments”
11

.  These can then be “applied” in pulseq e.g. as a preparation 

sequence (prior to acquisition) or during acquisition (e.g. for decoupling).  The density matrix 

is only defined at the beginning and end of a fragment i.e. filter elements cannot be 

applied as part of a sequence fragment. “Asynchronous” programming of the RF channels is 

supported, using the channel directive to limit subsequent pulse and delay commands 

to the specified channel.    

The following par block functions are used to define sequence fragments 

channel n future pulse and delay commands are restricted to RF channel n (numbered 

from 1, in the order in which they were declared in channels).  channel cannot be 

used part way through defining a synchronous fragment, since asynchronous and 

synchronous elements cannot be mixed. 

delay <dt>* inserts a delay of dt s into the sequence.     

pulse, pulseid  <pw>* (<amp>* <phase>* [<offset>* [-coherent]] [-

transients])+  add RF pulses.  pw is the nominal duration, amp is the RF amplitude 

(expressed as a nutation rate), phase is the RF phase and offset is the offset from the 

transmitter frequency.  An amp, phase, offset triple must be supplied for each active RF 

channel in synchronous mode (order as defined in channels).  Offsets must be either 

supplied or omitted for all channels, and non-zero offsets are only meaningful for soft 

pulses.  As intuitively expected, setting the offset to match the shift of a peak will put it 

on-resonance
12

 (V11.06.14).   The –coherent flag indicates that the phase change 

following an off-resonance pulse should be coherent with respect to the final phase, e.g. as 

in Frequency-Switched Lee-Goldberg decoupling
13

.  The –transients flag (soft pulses 

only) specifies that phase-transients should be applied (according to the transient 

amplitude set in transients).   

    pulseid is used for hard (ideal) pulses.  In this case pw is only used to determine the 

effective tip angle, and the effective duration of pulse appears to be zero.  The 

“synchronisation” of pulseid’s can be flagged using the optional sync parameter 

(pulseid [<sync>] <pw>…), where `+’ (“rising event”) indicates that it belongs to a 

new sequence fragment, `-’ (“falling event”) that it finishes a fragment, and `|’ 

(default) gives no sychronisation hint. These hints are important if propagator evaluation 

starts or finishes on a hard pulse.    

Unlike most other commands, the pulse commands accept list quantities, which are expanded 

to a series of pulses e.g. pulse 2 50e3 [0,90,180,270] is equivalent to 
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 pulse 2 50e3 0 

 pulse 2 50e3 90 

 pulse 2 50e3 180 

 pulse 2 50e3 270 

This makes writing shaped / ramped pulses more straightforward. The lists must be the same 

size, and the duration may be also be specified as a list of V11.09.29.   

Although it is usually more efficient to use sequence fragments multiple times in the acq 

block (using prop <seq> <n>), it is sometimes necessary to construct a complete new 

sequence fragment e.g. for use as an acquisition decoupling sequence.  As an alternative to 

using lists and a single pulse, this can also be done by defining the repeated fragment as a 

block and then using include14 e.g. 

 XiX { 

  pulse $pwdec 100e3 0 

  pulse $pwdec 100e3 180 

} 

… 

include XiX [1:3] 

will include XiX three times (the [1:3] creates a dummy arrayed argument). Note that the final 

evaluation of pulse sequences is independent of the mechanism used to create them. 

store (<fragname>[<sync time> [<sync hint>]]|<listname> <fraglist>) stores the 

current sequence fragment under the supplied name (not restricted to a number).  A 

store finishes the current sequence
15

 and resets the mode to synchronous.  The total 

duration on the (active) independent channels must be the same before an asynchronous 

fragment can be stored (use delay to pad sequences to the same length if necessary).  

The optional synchronisation time is useful in MAS problems to establish the period over 

which the MAS period and RF period can be matched when this is not obvious.  This can 

greatly speed up calculations, especially for phase modulated RF.  The sync_ratio 

function (see below) can be used to find a suitable synchronisation. 

 A zero synchronisation time corresponds to no suggested synchronisation.  The optional 

“synchronisation hint” (V08.03.08) can be useful for problems involving magic-angle 

spinning.  It specifies a “helpful” division of the rotor period for “caching” of propagators.  

If, for instance, the value 5 is given, then 5 “cache slots” over the rotor period will be 

created and subsequent requests for propagators at intervals of 72° will not require 

recalculation.  

  store <listname> <fraglist>  associates a name with a cyclic list of sequence 

fragments (see prop in the pulseq block for more details).  Such lists are not 

interchangeable with sequence fragments, but the names must be unique to avoid 

confusion. 

 

pulseq  

This block defines how the pulse sequence fragments defined in par are to be used.  In 

effect, the “actions” in this block are applied successively to the initial density matrix to 

generate the NMR signal for a given orientation.  Valid commands in this block are 

acq [<phase>*] [(<seqname>|-)[<synctime>]] [-putmatrix]  acquires the FID with a 

given receiver phase shift (defaults to 0) and optional “acquisition sequence” i.e. RF 

applied during signal acquisition
16

.  The phase parameter is omitted for indirect 

dimensions (see below).  acq can be used after an acqn (direct dimension only), in which 

case it fills the remaining points in the data set (V09.03.10).  
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  The optional “synchronisation time” can be used to help pNMRsim find a synchronisation 

interval when this can’t be automatically deduced (i.e. the different time periods are not 

simple multiples of each other).  For instance, if the rotor period is 30 s and the dwell 

time is 20 s, passing a synchronisation time of 60 s would allow pNMRsim to calculate 

the evolution over just 60 s rather than accumulating the signal “point by point”
17

. (see 

the discussion of synchronisation of pulse sequences). 

The synchronisation interval can also be specified when RF is not active (i.e. when the 

dwell time and rotation period are not obviously synchronised) using – to denote no 

acquisition RF.  The supplied valued overrides any synchronisation period (for the MAS 

and RF) defined with the sequence, which is otherwise used by default. 

   Acquisition sequences must normally have non-zero duration, however, sequences 

consisting purely of hard pulses are also accepted provided the relevant sw parameter is 

unset.  In this case, data points are acquired after successive applications of the sequence 

(and the spectral width is meaningless).  

  The optional putmatrix flag (indirect dimensions only) outputs the propagator(s) used 

to the current output stream.  (There is otherwise no mechanism to output propagators 

since these do not have an independent existence in pNMRsim).  The propagator can be 

used to determine an “effective Hamiltonian” for the propagation via the matrix logarithm 

(but the result is not unique).  

acqn <points> [<phase>*] [(<seqname>|-)[<synctime>]] [-putmatrix]  (V09.03.10) 

behaves like acq, but acquires a fixed number of data points rather than filling the data 

row.  Multiple acqn’s can be used for a single data row, but it is only valid for directly 

acquired dimensions.  It should only be used if a data acquisition consists of distinct 

unrelated segments; most cases of “point by point” acquisition can be more efficiently 

expressed by acquisition in the presence of an RF sequence.  The total number of data 

points acquired cannot exceed np.  Unfilled data points will be zero. 

acqpoint <phase> (V09.03.10)  acquires a single data point in the directly acquired 

dimension using the current density matrix and detection operator.  There is no 

propagation of the density matrix and the time is not incremented.  Again, for reasons of 

efficiency, this should only be used if it is not possible to use the normal acq. 

echo <text> outputs text (see above). 

exchange <operators>+ <matrix name> (V09.03.10) allows components of the density 

matrix to be arbitrarily shuffled.  The projections of the density matrix onto a set of 

operators are calculated and the named transformation matrix (created by matrix set 

<name> general in par)  is applied to these coefficients and these new coefficients as 

the weighting factors for the operators in the new density matrix e.g. 

 matrix set swap general [0,1,1,0]  

… 

exchange I1x I2x swap 

 would exchange the coefficients of I1x and I2x in the density matrix i.e. exchange x 

magnetisation on spins 1 and 2.  transfer can be regarded is a special case of 

exchange with the matrix [0,0,1,0] i.e. the component of the first operator is fully 

transferred to the second operator.  Note that the exchange matrix may be complex, 

allowing phases to be altered. 

do <n> … end do (V12.03.27) repeats n times the actions contained between the do and 

end do lines. The loop is skipped if n is zero. For example 

 do $np 

  acqpoint 

  prop myprop 

  filter myfilter 
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 end do 

 would effectively acquire a FID in which a filter was applied to the density matrix after 

each propagation step. Note that this will be much slower than obtaining the FID with the 

normal acq directive, and such loops should be avoided if possible as they considerably 

reduce the scope for optimisation. 

filter <mask> applies the previously-defined coherence mask to the density matrix.   

get <variable name> <operator> [<source>] creates a new variable whose value is the 

trace of a matrix (by default the density matrix, density) with the specified operator 

previously defined in par (real component only).  If for instance, matrix set 

detectH 1H:x has been used in par to create the operator matrix detectH, then get 

signal detectH can be used to determine the current 
1
H x magnetisation for 

subsequent output via echo.   Note that the variable name must be a new one since you 

are not allowed to change the definitions of quantities during a simulation
18

.   

prop <pseq> [n*] [-putmatrix|-reset] applies a sequence fragment or list of 

fragments sequence n times to the density matrix (or does nothing if n is zero).  The 

optional putmatrix flag outputs the overall propagator to the current output stream.   

<pseq> refers to a previously-defined pulse sequence fragment, plus an optional phase 

shift, using the syntax <fragment>+<shift>.  The phase shift is applied to all RF channels 

once the fragment propagator has been calculated, which is often simpler and more 

efficient than phase-shifting the individual elements of the sequence fragment.  If these 

“phased sequence” fragments are included inside an {} array, then the elements of the 

array are stepped through in parallel with other arrayed quantities e.g. 

{pulse90+0,pulse90+180}.  In principle the pulse sequence fragments in a list 

need not have the same duration, although a warning is given if this is not the case since it 

probably indicates an error (V11.03.06).  [] denotes of list of fragments, whose members 

are used in turn each time a <pseq> is used. The pointers are reset whenever the sequence 

is changed.  store’ing a shared fragment list as a named sequence allows the value of the 

list pointer to be preserved between different parts of a sequence e.g. 

[in par] 
store REDORxy8 [REDORxy,REDORyx,REDORXY,REDORYX] 

[in pulseq] 
prop REDORxy8 2 

prop REDORmiddle 

prop REDORxy8 2 

 will apply REDORxy,REDORyx,REDORmiddle,REDORXY,REDORYX.  The –reset 

flag (V11.03.06) resets the list pointer before propagation i.e.  

prop REDORxy8 2 

prop REDORmiddle  

prop REDORxy8 2 -reset 

 would apply REDORxy,REDORyx,REDORmiddle,REDORxy,REDORyx. 

[] lists can be nested inside {} lists (changed in V11.03.06).   Note that || (sum) arrays 

cannot be used (changed in V11.03.06) since phase cycling etc. is generally best 

performed using the phase shift parameter.   prop has some associated optimisations (see 

combinepropagators and smartprop).  These generally can only be applied in 

MAS simulations when overall duration of the fragment set (i.e. the time over which it 

repeats) is synchronised with the spinning period. 

propfor <time> <pseq> [-putmatrix|-reset] works likes prop, but rather than 

applying a sequence fragment a fixed number of times, it applies it for a specified time (in 

s).  This is useful, for example, when the first point of an acquisition is at a non-zero 

time; propfor can be used to fill the gap up to the first data point (which is always 

acquired at time zero).  propfor is designed to be used with a single, “continuously 
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running” sequence and so cannot be used with [] lists.  Rather a repeat use of propfor 

with the same sequence will pick up where the previous finished, unless the –reset flag 

is used to force propagation to restart from the beginning of the pulse sequence.  For 

example: 

propfor 50 tppm 

pulse180 13C x 

propfor 50 tppm [–reset] 

 might correspond to a spin-echo experiment on C with TPPM decoupling on H and a delay 

periods of 50 s.  Without the –reset, the decoupling would, in effect, run continuously 

either side of the echo pulse.  With the –reset, the TPPM would start from the beginning 

after the echo pulse.  The former is more likely to match the experimental implementation, 

but the latter formulation increases the likelihood that the propagator from the first period 

can be re-used for the second.  The current implementation of propfor (V11.03.06) 

applies the smartprop and combinepropagators optimisations where possible, 

and so should be equally as efficient as the corresponding prop. 

pulse180 [<nucleus>] <phase>* (V09.12.02) applies a hard (perfect) inversion pulse of 

given phase to the selected nucleus (1H, 13C etc.).  The nucleus may be omitted in 

homonuclear systems.  Unlike other RF pulses in general, a perfect inversion pulse does 

not disrupt the block structure of the free precession Hamiltonian.  Hence if RF is only 

required on a given nucleus for inversion pulses (e.g. a simple spin echo) it is then possible 

to use pulse180 without including the associated nucleus in the RF channels 

declaration, with a considerable gain of calculation efficiency.  

putmatrix <name> [-full|-eigenbasis|-structure|-statistics 

[<indices> [<filter matrix>]] [-once] displays the current contents of a matrix (see 

above).  If the optional –full flag (V09.12.02) is specified then the block structure of 

operator matrices (only) is expanded (to facilitate comparison between simulations with 

different block structure). 

Additional output types (V13.06.13): if –structure is specified, the dimensions of the 

blocks in the Hamiltonian / matrix are output. –eigenbasis outputs information on the 

eigenbasis. This takes the form of an ordered list of the states in each diagonal block of the 

eigenbasis, and, for operator matrices, this lists the index of the eigenbasis block 

(numbered from 1) for the row (bra) and column (ket) states of each block. In other words, 

combining the eigenbasis information from an operator with the Hamiltonian allows the 

states associated with each element of the operator matrix to be established. –

statistics outputs statistics on operator matrices (most usefully for the density 

matrix). This currently breaks down by both coherence order and spin order the total 

number of matrix elements involved, the number of non-zero elements, and the (complex) 

sum and norm (root-sum-square) of the elements. The numerical threshold for deciding 

whether a matrix element is non-zero can be overridden with the environment variable 

NMRSIM_COHERENCE_TOLERANCE. In the absence of a log file, output is displayed 

in human-readable form. Log file output (ASCII or Matlab) contains the same information 

but in a form more suited for machine parsing / additional processing. (EXPERIMENTAL: 

subject to change) The optional arguments for statistics can be used to restrict the 

spins for which the statistics are calculated, by specifying the indices of the spins of 

interest e.g. [1,2] or Indicesof(’1H’), and, as a further option, selecting a subset 

of coherences using a previously filter matrix (V13.08.08) e.g. matrix set Cplus1 

Indicesof(’13C’) 1 [in par] putmatrix density –statistics 

Indicesof() Cplus1 [in pulseq].   

 If the –once flag (V13.06.13) is specified, the information will be output on the first run 

through only (e.g. the first orientation of a powder average).      
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rotor_angle <angle>*  allows the rotor angle to be changed during a pulse sequence (it 

is reset to the default supplied in par at the start of pulseq). 

scale <factor>* [<filter matrix>]  (extended V11.12.11) scales the density matrix by the 

supplied factor.  This allows different contributions to a summed spectrum to have a 

different weight (scale  in the proc is only applied to the summed spectrum and so 

can’t be used for this purpose). If the optional filter matrix is supplied the only the density 

matrix elements corresponding to the non-zero elements of the filter are scaled. This is 

typically used to damp terms by spin order and a warning is given if scale is used with a 

coherence-based filter.   

timeadjust <time>* [-absolute] (V09.03.10) adjusts the current time counter 

(which starts at zero at the beginning of each run through the pulseq block).  The time 

adjustment (in microseconds) is relative to the current time, unless the –absolute flag is 

given.  Note that there is no effect on the density matrix; this simply allows time 

adjustments if actions such as transfer or exchange  have been used to “artificially” 

manipulate the density matrix.  In the context of MAS experiments, it may be necessary to 

adjust the time in this way to maintain rotor synchronisation.  A warning is given if 

timeadjust is used in a static simulation since it has strictly no effect. 

transfer <from> <to>  Takes the trace of the density matrix with the operator <from> 

and replaces the density matrices with operator <to> scaled by this trace.  The operators 

can either be defined in the par block (essential if they are not constant expressions) or 

specified directly as operator expressions (V09.01.03).  Hence   

matrix set 1Hx 1H:x 

… 

transfer 1Hx 13C:x 

 

can be used as an ideal cross-polarisation i.e. converting the 
1
H x magnetisation (operator 

defined in par) into 
13

C x magnetisation (given as operator expression). 

 

If {} arrays are being used to create data sets with multiple (independent) rows, then multiple 

pulseq blocks can be specified, one per row of the data set.  This allows different pulse 

sequences to be applied to different rows.  Alternatively, but less flexibly, a single pulseq 

block can be used, but the parameters varied using {} arrays. 

proc 

The proc block defines the processing that is applied to calculated FID or spectrum after any 

summation / powder averaging
19

.  The individual “actions” are applied successively to the 

complete data set (which may be two-dimensional).  A limited number of commands only 

apply e.g. ft2d (or function differently) for “true” 2D data sets i.e. sw1 has been defined. 

Processing can be applied to individual transients before any summation (over the powder 

and/or || summation arrays) by specifying processing commands in an initialproc block 

placed before proc. This is obviously significantly less efficient than processing a single 

summed signal and is only useful if different processing e.g. line-broadening needs to be 

applied to different signals (differing signal intensities can be handled in other ways e.g. 

scale in pulseq). By default (and if the mergeprocessing optimisation has not been 

disabled) the contents of initialproc will be merged into the front of proc in the 

interests of efficiency (V12.08.02). 

As above, multiple processing blocks can be specified for data sets containing independent 

rows.  

Note that with the exception of addsignals, most processing commands are specified in 

terms of raw data points rather than frequencies. Hence the “reference frequency” is not 
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relevant. The only other time that the reference frequency is used is with the –scale option 

of save. Internally data is stored in the “natural” order used by SIMPSON. Time domain 

data starting from t = 0, with zero frequency corresponding to no time dependence. Frequency 

domain data is stored in order of increasing frequency, with zero frequency assumed to 

correspond to the midpoint (by default the data is shifted by half and spectral width as part of 

Fourier transformation). Note that the “reference frequency”, which sets the frequency of the 

spectral midpoint, is rarely required and is only directly visible if a frequency scale is 

constructed using the –scale option of save. By default data is also saved in this order 

(which is specified by the SIMPSON file format). Some processing programs, however, store 

data in “display order”, which is in the opposite direction by convention for frequency domain 

data. The –reversefrequency flags (V15.08.13) can be used when reading or writing 

data to account for this. This is generally less confusing than using rev to fix up such issues.  

Most processing parameters are fixed when the command is created, but others (marked with 

*) can be variable i.e. can be arrayed or used as fitting parameters.   

addlb <LW>* [<r>* [<LW1>* [<r1>*]]] a line-broadening equivalent to <LW> Hz is 

applied to the FID.  r is a Gaussian/Lorentzian factor (1 for pure Gaussian, 0 for pure 

Lorentzian–default).  The optional parameters give the line-broadening and r factor for the 

indirect dimension.  addlb can also be applied in the frequency domain (1D variant 

only), but note that the definition of the Gaussian/Lorentzian lineshape is subtly 

different
20

–lineshapes of the same width <LW> are added but in proportion specified by 

<r>.   

addnoise <stddev>*  adds Gaussian noise of given standard deviation to the data set. 

addsignals <frequencies>* <amplitudes>* [<phases>*]  adds frequencies directly to a 

time domain or frequency domain signal.  Multiple signals can be specified using [] lists 

e.g. addsignals [-1e3,1e3] [0.2,0.4] 45 adds two signals, of phase 45 

degrees: intensity 0.2 at –1000 Hz and intensity 0.4 at 1000 Hz. Note that when used in the 

frequency domain, addsignals is one of the few commands to refer to any reference 

frequency. (Clarified in V15.08.13.) 

apply <function> [<arg number> <arguments>+] [-real|-imag|-complex|-

complexpair] (V09.03.10) applies a function to the data set.  If the function takes 

more than one argument, the remaining arguments must be supplied in order along with an 

argument number indicating which argument the data set corresponds to.  If the data set is 

multi-dimensional (ni set), the data is passed as a single data vector, otherwise each row 

is processed independently.  By default (-complex) the function is applied to both real 

and imaginary components independently.  Alternatively, the function can be applied to 

either the real or imaginary components; in this case, the function cannot change the 

number of data points.  If -complexpair is specified, then the function is applied to a 

vector of “complex pairs” i.e. alternating real and imaginary components.  This potentially 

allows complex arithmetic to be applied.  Since the function may can external routines (via 

``), potentially arbitrary transformations of the data are permitted. 

  Examples: 

 apply sin –real would replace the real component with the sin of each point. 

 apply head 1 10  would delete all but the first 10 data points 

conjugate  Takes the complex conjugate of the data set.  This can be applied to either 

FID or spectrum, although it is most useful for the former (having the effect of reversing 

the spectrum after Fourier transformation).  This is applied automatically if the detection 

nucleus has a negative gyromagnetic ratio (but can be reversed by applying an additional 

conjugate step prior to ft). 

extract <indices> [<row indices>] reduces the data set to a subset of the original rows 

and columns based on the sets of indices supplied e.g. extract [30:40] selects points 
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(or whole columns of a 2D data set) 30 to 40 (inclusive), extract 

[30:2:32,40:2:42] selects points 30, 32, 40 and 42 etc.
21

  For 2D data, the first set 

of indices refers to the direct dimension (columns) and the second set to the rows.  NB. the 

spectral width will generally be meaningless after an extract.  An empty set of indices, 

[], refers to the complete row / column (V09.11.10) e.g. extract [] [1:3] returns 

the first three rows of the data set. 

fill <value> [<indices> [<row indices>]] [-real|-imag|-complex] 

sets all or part of the data set to a defined value.  The indices (and optional row indices for 

nD data sets) are used to define a subset of the data.  The –real, –imag or –complex 

(default) flags specifies whether the real component, the imaginary component or both are 

set e.g. fill 0 –imag sets the imaginary component of the data to zero, fill 0 1 

sets the first point of the data set to zero etc. 

ft [-inv|-noscalefirst|-noshift]  1D Fourier transform (or inverse 

transform).  By default the first point is scaled by 0.5 to ensure a zero baseline for a normal 

FID and the output is shifted so that the zero frequency is in the middle of the spectrum.  

These steps are not strictly part of the FT, but follow SIMPSON usage.  The –

noscalefirst option turns this off, and the scalefirst command can be used for 

more control of the first point scaling.  Similarly –noshift turns off the data shift.  The 

FT is most efficient if the number of points is a power of 2 (so the fast FT can be used)–a 

warning is given if this is not the case. 

ft2d [–noscalefirst|–noshift] [<rp> <lp> <rp1> <lp1>] 2D Fourier 

transform.  Note the different name to distinguish 1D and 2D transforms.  A hypercomplex 

transformation is applied if the “skip” for the indirect dimension is 2 i.e. alternating “sine” 

and “cosine” FIDs, otherwise a “phase-modulated” FT is applied (which will normally 

lead to phase-twist lineshapes).  The phase parameters can be omitted to perform the 

transformation without phase correction.  Note, however, that a phase correction in t1 

cannot be applied as a separate step as the necessary hypercomplex data has been 

discarded.  ft2d cannot be applied to data sets already in the frequency domain.  –

noscalefirst and –noshift turn off the first point scaling and data shifting 

respectively that are applied by default. 

normalise [<norm>] [-integral|-minmax|-abs|-area]  normalises the data 

set to a specified value (1.0 by default) using either the integral (unscaled sum) of the real 

component (default), the maximum or minimum of the real component, the maximum 

absolute value of the complex data points (V09.01.03), or the “area” (V10.11.14) of 

signals (sum multiplied by spectral width).  The data set is considered as a whole for nD 

data (i.e. ni set), otherwise rows are normalised independently. 

offset <value>|<list> [-real|-imag|-complex] adds a constant value to the real 

(default), imaginary or both real and imaginary components of the data set. Alternatively a 

list of the same size as the data set can be added. 

phase <rp>* <lp>* [<pivot>]  Phase adjust spectrum (in one dimension, cf. ft2d 

for 2D phasing).  The <pivot> value specifies the origin for the first-order order (“right”) 

phase as a fraction of the spectrum i.e. 0 corresponds to one end, while a pivot of 0.5 sets 

the origin to the middle of the spectrum.  Normally the spectrum has been shifted post 

Fourier transform so that zero is in the middle (and so a pivot of 0.5 is most appropriate).  

Phase can be applied to time-domain data (useful for “shearing” data sets), and here the 

pivot should be 0.  Defaults of 0 (time domain) and 0.5 (frequency domain) are used if this 

parameter is omitted.  

resample <newnp> [-fold|<sw> [<offset>]] Resamples the data set (direct 

dimension only) to contain newnp data points (using cubic interpolation).   If the –fold 

option is specified then the data assumed to “fold round” and peaks that have been split 

across the ends of the spectrum will be treated correctly.  In contrast, if the spectrum is 

treated in a simple linear fashion then the frequency range can also be changed by 
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specifying a new spectral width and optionally a signed offset giving the centre of the new 

spectrum with respect to the centre of the current spectrum. 

resample is particularly useful for adjusting the frequency to match experimental data 

which is unlikely to have been sampled with the same synchronisation conditions that are 

convenient for efficient simulation.  Note that resampling a time domain data set is likely 

to give poor results and is not permitted.  

rev The order of data points in the spectrum is reversed.  This is applied automatically to 

the results of frequency-domain calculations when the detection nucleus has a negative 

gyromagnetic ratio.   

save <fname> [<variables>] [-simpson|-simplot|-matlab|-ascii] [-

nodata|-projection|-sum|-scale|-statistics|-parameters|-

source] saves the data set in SIMPSON, Matlab or a raw ASCII format.  SIMPLOT 

doesn’t read the SIMPSON 2D format, and so 2D/arrayed data sets can written out as a 

series of rows using -simplot.  If fname is of the form <base>.XXX then the 

filenames are <base>00.XXX, <base>01.XXX etc., otherwise the series begins 

<fname>00.  The number of digits varies between 1 and 3 depending on the maximum 

number of rows in the data set (V09.07.02).  These can then be loaded and overlaid in 

SIMPLOT e.g. simplot <base>??.spe.  A sum spectrum and variable array list is 

also calculated and output.  In MATLAB format, these data sets are incorporated in the 

output file, otherwise they are written as separate <fname>_sum and <fname>_scale 

sets (-ascii only).  2D data with np = 1 are treated as 1D data sets when saving in 

simplot and ascii formats.  NB. save should not normally be used in proc when 

[] arrays are being used or when fitting/optimising (see below). 

 Optionally the contents of (numeric) $ variables can also be saved e.g. save output 

final_chisquared would store the value of the variable containing the final value of 
2  from a fitting.  This is most useful for Matlab format output as the values can be stored 

in a single file rather than creating a set of individual files for each output.  Note that the 

variable name is used rather than its value ($final_chisquared).  Note that (unless –

nodata is specified), the list of spectral widths, sw (frequency domain data) or dwell 

times, dt (time domain) is automatically saved in the Matlab format. 

The remaining flags control what outputs are saved.  In addition to the main data set, 

additional data can be saved e.g. sum spectrum, projections etc.  These sets are stored in 

the MATLAB file if this format is being used, with the appropriate name (e.g. 

projection), otherwise a separate file is created with the identity of the data set 

appended to the filename e.g. mysim_projection.  Real data sets (e.g. axis scales) 

cannot be saved in the SIMPSON format; use ASCII instead.  –nodata suppresses 

saving of the data, so different formats can be used for data and “supplementary 

information” e.g.   

save myfile –simpson 

save myfile –ascii –scale –nodata 

The options are 

-scale Time or frequency domain scales in the direct dimension 

(scale) plus indirect dimensions (scale<n>) if present. 

-sum Sum (sum) of rows (regular nD data only) 

-projection 1D (sum) projection across columns (2D data only) 

-statistics Fitting statistics (covariance for the covariance matrix 

and residuals for the fitting residuals) 

-parameters Values (parameters) of arrayed variables in each row.  If 
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the save occurs after fitting statistics have been calculated 

(i.e. within the finalise block), then the fitted parameters 

+ errors are saved instead.  The variable/parameter names are 

either listed in the parameters file when fitting parameters are 

being saved (V12.08.02) or in a separate “file” 

(parameternames) when arrayed variables are being 

saved or the MATLAB format is being used. 

-source Incorporate (where possible) the contents of the input file as 

comment lines in the output file together with the command 

line arguments. 

-

reversefrequency 

(V15.08.13) Reverse order of output for frequency domain 

data (see above). Will also reverse frequency scale if –

scale used in same directive. 

-original (V15.08.13) Save original data masked by any fitting mask. 

 

scale <factor>* The data is multiplied by the given factor. 

scalefirst <factor>*  [<factor1>*]  scales the first point (of the FID) by the given 

factor (usually 0.5).  The optional second parameter applies a scaling in t1.   

shifthalf shifts the data set by half its length, swapping zero frequency between the 

centre and the edge of the spectrum.  The shift is performed in both dimensions for true 2D 

data. 

set [-sw|-sw1|-ref|-ref1|-sfrq|-sfrq1 <value>*] (V11.06.14) allows data set 

parameters, such as the spectral width, frequency origin, and spectrometer frequency in 

direct or indirect dimensions to be set / overridden. The ref values specify the frequency 

of the middle of the spectrum (by default zero), while the sfrq values provide the 

notional spectrometer frequency for the dimension (this can be deduced automatically 

from detect_operator for direct dimensions).  The ppm notation can be used to 

evaluate NMR frequencies if proton_frequency has been set e.g. 1e6p1 would 

return the NMR frequency (in Hz) of nucleus 1. The ref and sfrq parameters are saved 

with some file formats (SIMPSON, Matlab) but are not relevant to the simulation itself 

and other processing with a few exceptions for ref. setdomain should be used rather 

than the SIMPSON usage of set –type.    

setdomain [<dimension>] [-time|-frequency|-switch|-States|-

noStates]  (V09.08.26)  allows information to be changed explicitly for a specified 

dimension (numbered from 1 up to the acquisition dimension).  The acquisition 

dimensioned is the default. –time and –frequency set the domain to time or frequency 

respectively, while –switch swaps between the two.  These are useful if using a user-

defined or external processing function that does not update dimension information. –

States flags that an indirect dimension consists of alternating cos and sin FIDs, rather a 

simple series of (phase modulated) FIDs. –noStates flags the reverse. This information 

is important for several 2D processing commands.  These flags are only valid for time 

domain data in indirect dimensions.  If no flags are specified, the current dimension 

information is output for the specified dimension or all dimensions if none is specified.    

transpose (V11.06.14) swaps direct and (first) indirect dimensions. transpose can 

only be applied to nD data sets or ones in which each row has the same number of data 

points and other processing characteristics.  It is useful for converting a series of single-

point data sets into a one-dimensional data row. 

zerofill <points> [<points1>] fills the FID up to the specified number of points with 

zeroes.  If <points> is less than the current number of points, this is taken as a zero-filling 
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factor i.e. the length of the FID is multiplied by the given factor, increased, if required up 

to the nearest power of 2 (V09.05.01) and padded with zeroes (although excessive filling 

factors generate an error).  The optional parameter specifies the zero-filling in t1. 

  

finalise 

The optional finalise block contains instructions to be executed before pNMRsim 

terminates.  Only a limited number of instructions are valid here: echo, log_file and 

save, fit statistics (V08.03.01). This block is most useful for optimisation problems 

for instructions to save the optimised results, parameters etc. (instructions placed in proc 

will be executed multiple times).  Note that fit statistics updates the internal 

variables associated with the –parameters and –covariance options for save.  It can 

be used whenever fitting parameters have been defined, even if no fitting was actually 

performed. 

Product operator expressions 

Instructions such as start_operator take product operator expressions as arguments.  

These consist of weighted sums of individual product operator terms
22

, which themselves 

consist of products of individual spin operators: 

I<number><op> for operator <op>, one of x, y, p (or +), m (or -), c, of spin <number> 

e.g. I1x, or F<op> for the sum operator <op>. c to refers to the central transition of 

half-integer quadrupoles 

In<op> is the SIMPSON equivalent to F<op> 

I<number>:m,n, Fm,n for the single transition operator between m–n for an individual 

spin or a sum operator respectively e.g. I2:2,1.  The indices refer to the Zeeman 

levels indexed from 1 (up to 2I+1). 

<nucleus>:<op>, <nucleus>:m,n are sum operators or sum single transition operators for 

a given nucleus type e.g. 13C:x, 2H:1,2  

C<channel>:<op>, C<channel>:m,n are sum operators or sum single transition operators 

for a given RF channel e.g. C1:y.  These are useful for specifying sum operators in 

heteronuclear systems without referring to specific nuclei. 

 

Each operator can be proceeded by a real or imaginary scaling factor e.g. 2* or 3*i*.  

Note that pNMRsim only understands real numbers so it is not possible to use general 

complex expressions. 

 

Examples 

Simple expressions: I1x, Fy, C1p, 13C:x 

Product operators: 2*I1x*I2x, 0.82*I1p*I2+*I3-   (note that only I terms can 

be used when multiple operators are present) 

Full product operator expressions: cos(45)*Fx + sin(45)*i*Fy, I1p*I2m + 
I1m*I2p 

N.B. Prefer simple expressions where possible; optimisations involving the block structure of 

the matrix representations will not be applied if the block structure of the operators cannot be 

readily deduced. 

2D and arrays 

pNMRsim has been designed to make producing multi-dimensional spectra or series of 1D 

spectra as painless as possible.  Setting ni (or n1) in the par block flags to pNMRsim that 
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the output is a two-dimensional spectrum, and it will then expect two acq commands in 

pulseq i.e. in general 

[prop|filter]*: preparation 

acq [<seq>]: evolution 

[prop|filter]*: mixing 

acq [<phase>] [<prop>]: acquisition (this last acq can be omitted) 

Note that the indirect dimension acq does not take a receiver phase shift parameter.  

The indirect dimension dwell time is determined from sw1 and t1 is incremented from 0 in 

steps of the dwell time, every skip runs through the acquisition.  

Phase cycling in the indirect dimension e.g. for phase sensitive detection, is implemented by 

passing a set of sequence fragments in the prop’s: e.g. using prop 

{prepCos,prepSin}, the density matrix would be propagated by prepCos and 

prepSin on alternate t1 increments.  Alternatively, propagator phase shifts can be used e.g. 

prop {prep,90+prep}.  This formulation keeps the structure clear and aids optimisation 

e.g. the propagator prep would only be calculated once. 

Multi-dimensional data sets are created by setting the variables n1 (1
st
 indirect dimensional; 

equivalent to ni), n2 (2
nd

 indirect dimension) etc.
23

 e.g. n1 10, n2 20 creates a 3D data set 

with 10 increments in the first indirect dimension and 20 in the second.  2 or 3 acq 

commands would be expected (depending on whether the direct dimension acq is explicit). 

Arraying variables is another way of creating nD data sets.  In most cases, any quantity can be 

“arrayed” by writing its value as a list e.g. delay {5,10} (see below for more details).  

The calculation would be repeated twice with the 2 rows of the final data set corresponding to 

simulations with delay of 5, and 10 s.  Any number of quantities can be arrayed in this way.  

Multiple lists are always stepped through in synchrony e.g. combined with pulse 5 

{0,90,180,270}, the output would have 4 rows corresponding to 

delay 5 s, phase 0 

delay 10 s, phase 90 

delay 5 s, phase 180 

delay 10 s, phase 270 

Different arrays must have “compatible” lengths i.e. be integers multiples of each other, with 

the longest array setting the number of rows in the output.  As illustrated above, shorter arrays 

will be “cycled” through until the longest array is exhausted.  There is no facility (at the 

moment) for nesting arrays to create multidimensional data sets.  

If a data set is multi-dimensional (i.e. ni/n1 has been set), then the calculated data set must 

be rectangular i.e. the number of points must be the same in each row.  If ni is unset, 

however, then the parameters of different rows can be completely independent, including the 

number of data points, np.   This is particularly useful for simultaneous fitting of multiple 

data sets.  In this case, however, some data processing commands e.g. 2D Fourier 

transformation will be unavailable. 

The two approaches can be combined, provided the number of sizes of the arrays and the ni 

are commensurate.  The maximum array length must be one of: 

The ni increment, in which case the array is stepped through with each 2D row (and 

restarted when for each step of the indirect dimension dwell time).  

ni, in which case the array is only stepped when the indirect dimension dwell time is 

incremented (and is not cycled) 

The total number of 2D rows i.e. each element is used once for the corresponding row. 
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For instance 

variable N 32 

transients {0:0.05/($N-1):0.05} 

… 

ni $N 

would cause the phase transient parameter to be increased from zero to 0.05 in 32 steps over 

the course of a 2D simulation.    

Arrayed variables can be nested by tagging with a virtual dimension; :<m> means that the 

variable will be varied over dimension m only.  The dimension sizes are deduced 

automatically from the largest run (unless the data set is multi-dimensional, in which case the 

dimension sizes are set explicitly) e.g.  

variable foo {1:4}:1 

variable bar {2,3}:2 

variable bar2 {3,4,5,6}:2 

variable foobar {1:8} 

Assuming indirect dimensions had not been specified, two virtual dimensions would be 

created: dimension 1 of size 4 (from foo), and dimension 2 of size 4 (set of bar2).  The total 

number of rows would then be 16, and the variables would take on the values in the table: 

foo bar bar2 foobar 

1 2 3 1 

2 2 3 2 

3 2 3 3 

4 2 3 4 

1 3 4 5 

2 3 4 6 

3 3 4 7 

4 3 4 8 

1 2 5 1 

2 2 5 2 

3 2 5 3 

4 2 5 4 

1 3 6 5 

2 3 6 6 

3 3 6 7 

4 3 6 8 

Dimension 1 (foo) is varied more quickly than 2 (bar and bar2).  As foobar is not 

qualified, it loops through its values continuously, independently of the dimension structure.  

 

An independent set of virtual dimensions can also be created for summed || variables.  

 

Multiple variables can be created in a single assignment from a list argument e.g.   

variable m,n [0,10] 

creates a variable m with the value 0 and n with the value 10. The quantities in the list are not 

required to be constants. 
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Whole lists can be assigned to multiple variables (V11.06.14) e.g. 

variable x,y,z [0,1,2,3,4,5,6,7,8] 

would assign [0,1,2] to x, [2,3,4] to y and [6,7,8] to z.  The number of elements in 

the list must be a factor (including zero) of the number of variables.  The alternative 

assignment order is selected using ; rather than , to separate the variables e.g. 

  variable x;y;z [0,1,2,3,4,5,6,7] 

would assign [0,3,6] to x, [1,4,7] to y and [2,5] to z, with the list members 

notionally allocated in order to x, y then z until the list is exhausted.  Note how in this case 

the number of variables does not need to divide evenly into the list length.   

Advanced topics: include files, expressions and variables 

“Pre-parsing level” 

The input file is parsed is at two distinct levels: an initial transformation of the input into a 

series of lines that are then passed to the “interpretation” level for parsing.  This “pre-parsing” 

level is analogous to pre-processing of C/C++.  

Each line is read from the current input source and processed independently. A trailing \ 

marks a “continuation line”; the \ is discarded and the line combined with the following line 

e.g. 

echo my \ 

lo\ 

ng line 

will be combined into the single input line echo my long line. 

Then any “substitution variables” are replaced i.e. $n where n is an integer or $VARIABLE 

where an all caps variable is assumed to be an environment variable.  The $n refer to 

additional command line arguments when pNMRsim was run (in the case of the main .in file) 

or arguments passed to include (see below).  $*n can be used to refer to all the arguments 

from n onwards e.g. $*2 would be replaced by foo bar if $2 were foo and $3 were bar.   

() can be used to distinguish the variable from surrounding text e.g. $(HOME)othertext.  

An error is generated if the variable is not defined unless a default argument has been 

supplied using the following syntax $(<variable>?<if undefined>)24 e.g. 

$(INCLUDEDIR?.) will evaluate to /home/user if INCLUDEDIR is set to 

/home/user or . if it is not set.   $(<variable>?<if defined>:<if undefined>) uses the 

second “argument” if the variable is defined, otherwise the expression is replaced by the third 

“argument” e.g. $(DEBUG?echo Debugging:) becomes “echo Debugging” if the 

environment variable DEBUG is set, otherwise no text is substituted. $(<variable>!...) 

(V12.08.02) works in the same way as $? except the test is whether the variable is defined 

and non-empty (as opposed to simply being defined).  

Because arguments are passed by simple text substitution, care is required with expressions 

e.g. if $2 is 5+5, the expression 2*$2 will be evaluated as 2*5+5 i.e. 15 rather than as 2*10.  

This can be avoided with parentheses i.e. 2*($2) will be evaluated as 20 as intended.   

Parsing of the input only takes place after this point.  With the exception of the following 

instructions: include, includeonce, variable, function, setenv all other 

directives must be used inside the appropriate {} block
25

.  

Directives specific to the pre-parsing level: 

include <filename>  [<argument>*] includes the contents of <filename> at this point, 

allowing externally generated sections of code to be incorporate within the framework of a 

main .in file.  The includeonce variant will only perform the include for a given 
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filename once and future uses of includeonce with the same filename will be ignored.  

Optional additional arguments are either evaluated (as real quantities) or passed on as is if 

quoted in single quotes and used as $ substitution variables ($1, $2 etc.) as the included file is 

parsed (see below), e.g. include XiX.inc ’$pw’ $vrf  and the XiX.inc file: 

pulse $1 $2 x 

pulse $1 $2 –x 

would result in the input lines: 

pulse $pw <value of vrf> x 

pulse $pw <value of vrf> –x 

Although this resembles a “function call”, macro substitution is a better analogy and care 

should be taken when passing quoted quantities (see below for the pitfalls of 

substitution variables). 

A powerful feature of include is that evaluated (i.e. unquoted) arguments are 

“vectorised”; if an argument expands to a list, then a new include will be created for 

each element of the list.  Multiple list arguments must have the same size and the lists 

are stepped synchronously e.g. include XiX.inc ’$pw’ [0:30e3:60e3]  

would result in the input lines: 

pulse $pw 0 x 

pulse $pw 0 –x 

pulse $pw 30000 x 

pulse $pw 30000 –x 

pulse $pw 60000 x 

pulse $pw 60000 –x 

 

The example above also shows that sections for inclusion can be created within the input file 

using {} blocks.  If a block name is not recognised, it is interpreted as defining a section of 

input to be used later by include.  Hence, rather than create a separate XiX.inc file, it 

would be sufficient to include: 

XiX { 

pulse $1 $2 x 

pulse $1 $2 –x 

} 

as a block at some point before it was required (e.g. in pulseq), and then use include 

XiX $pw $vrf.  Reading an XiX file would only be attempted if an XiX “macro” had not 

been created.  Such “internal includes” avoid the creation of multiple files and are marginally 

more efficient
26

.  Note that the contents of such a block are only parsed when the block is 

“called”, not when the file is scanned hence the $1 etc. will not be substituted at the point 

when the block is first encountered. 

By default, input files (for include, crystal_file and ’’ includes
27

) are looked for in 

the current working directory.  The NMRSIM_PATH environment variable can be used to set 

a search path e.g. if the value is /usr/local/shared/pNMRsim:. then pNMRsim will 

first try to read the file from /usr/local/shared/pNMRsim, and if this fails from the 

current working directory.  The path is not used if a relative filename is specified (i.e. it does 

not begin with /).  This is useful for sharing common definitions. 

setenv <variable name> <value>  (V09.03.10) allows environment variables to be set, 

either to be passed to external function calls or as new/altered substitution variables. 

The –noexecute command line flag allows the effects of this pre-parsing level to be 

examined without evaluation of the resulting directives
28

. 
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Modules 

pNMRsim can dynamically load “modules” that provide additionally functionality (or 

possibly modify default behaviour)
29

.  These are loaded with  

module <filename> where filename refers to a dynamic library (e.g. extras.so) which 

is installed in a suitable library directory (e.g. one listed in LD_LIBRARY_PATH).  module 

on its own lists the modules that have been loaded. Modules must be loaded before the 

spinsys block i.e. functions cannot be added/modified part way through an input file. 

 

Expressions and variables 

Most arguments to pNMRsim instructions do not need to have fixed values. An individual 

quantity can be one of: 

1. A single value which may vary in a fitting / optimisation e.g.: 

rotor_angle 54  sets the rotor angle to 54 degrees 

rotor_angle 54V sets the rotor angle to 54 degrees, but indicates this parameter is a 

"variable" to be optimised in a fitting (the V is ignored if there is no fitting).  

rotor_angle 54V1 sets the rotor angle to 54 degrees, flagging it as a fitting 

parameter, but also specifying its “uncertainty” at 1 degree.  If unspecified, the uncertainty 

defaults to 10% of the parameter value
30

.  If these values are too large, the fitting may have 

trouble converging on a solution; if too small, the fitting may progress slowly or easily get 

stuck in a local minimum.  

 

2. An “array” of fixed values e.g.: 

rotor_angle {50,54,58} steps the rotor angle through 50, 54 and 58 degrees.  Empty 

items are ignored e.g. {50,$1} would be equivalent to {50} if $1 were empty, and 

{50,52} if it had the value “52”.  The V suffix can also be used to denote a variable 

quantity e.g. rotor_angle {50V,54V,58} in the context of a fitting/optimisation 

would allow the rotor angle to vary (around its initial value) in rows 1 and 2 of a fitted data 

set, but fix it at 58 in the third. 

rotor_angle {54:4:58} steps the rotor angle from 50 to 58 degrees in steps of 4 

degrees.  (A warning is given if the step size doesn't neatly divide into the difference 

between start and end values.)  If omitted, the step defaults to 1 and the behaviour when 

the range is invalid is also changed;[3:1:2] gives an error, while [3:2] returns an 

empty list.  The latter behaviour is useful in cases such as [1:$n] which returns an 

empty result if $n is less than 1.  

rotor_angle {”angles”}  uses the content of  the text file angles for the array 

values.  The file should contain a simple list (possibly empty) of numbers in text form.  

The different elements of the “array” specification can be combined e.g. 

{”angles”,54:56,”moreangles”}. 

Array elements enclosed in | | delimiters
31

 (changed V11.03.06) denote a “sum array” e.g. 

|50,54,58|.  In this case the calculation is repeated for each in the array elements and 

the results summed.  “Normal” arrays can be nested inside sum arrays e.g. 

|{50,54},{58,60}| would create 2D data sets using the array {50,54} and 

{58,60} and sum the result. A post-fix V e.g. |15,16|V,  is effectively shorthand for 

adding a ‘V’ qualifier to all the elements (V15.08.13). 

Note that the array contents must be fixed when the variable is defined e.g. {50,$myN} is 

allowed if the contents of variable $myN are fixed.  From V09.09.XX it is possible to 

include non-constant expressions (see below) in arrays with some restrictions: the 
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expression must return the same number of elements each time (i.e. the array cannot 

change size) and it is not valid to make an arrayed variable dependent on another arrayed 

variable.  This is most useful for expressions involving fitting parameters e.g. to constrain 

amplitudes of two components to a fixed 1:2 ratio: 

 

 variable scalefactor 10V 

 … 

 scale |$scalefactor,2*$scalefactor| 

 

3. An expression. 

Expressions can be used to calculate results, which can include lists as well as single values.  

They can contain following operators 

Numerical quantities: if a shift quantity is being defined, the suffix ‘p’ can be used to denote a 

ppm quantity.  p can be used without qualification in homonuclear problems or where the 

intended nucleus is obvious (V11.06.14) e.g. in shift commands.  In other cases, the p 

must be followed by the nucleus index (from 1) e.g. if the nuclei were 13C 1H then 

1p1 would return the 
13

C NMR frequency (in MHz). 

V denotes a fitted variable and cannot be used directly in an expression e.g. 2*50V, but 

fitted variables can be used in subsequent expressions. 

Mathematical operators: ^, *, /, %, + or –.  ^ (power) takes precedence over *, / and % 

which take precedence over  + and – i.e. 10*10+1 evaluates to 101 not 110, 10/4+1 to 

3.5.  % returns the remainder from a division e.g. 6.5 % 3 evaluates to 0.5. 

x, y, -x, -y  can be used as shorthand for the quadrature phases 0, 90, 180 and 270 degrees.   

 

Functions are called using <function name>(<arguments>).  The arguments can be list 

quantities, in which case the operations are “vectorised” e.g. sin([0 45 90]) would 

return the list [0.0, 0.7071, 1.0].  Functions can be loaded dynamically or defined.  

The built in functions are: 

Mathematical functions: sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), 

exp(x), ln(x), sqrt(x), ceil(x), floor(x), round(x), abs(x) function 

identically to their counterparts in the C maths library with the exception that angles for 

the trigonometric functions are expressed in degrees (rather than radians).  Note that 

“domain errors” (such as taking the square root of a negative number) will cause 

pNMRsim to abort with an error message.  It is therefore important to ensure that invalid 

parameters are caught before expressions are evaluated in fitting/optimisation problems 

(e.g. with judicious use of abs or %). ceil and floor also have two argument versions 

e.g. ceil(x,y) returns the nearest multiple of y that is >= to x. 

< > comparisons (V09.08.26) return 0 or 1 depending on whether the inequality is true (1) 

or not (0).  There is no direct equality comparison, as this needs to be expressed carefully 

when dealing with floating point numbers.  if(x-y,..) is fine for testing whether two 

integers x and y are the same, otherwise a test like if(abs(x-y)>tolerance,...) 

ought to be used. 

gcd(m,n) and lcm(m,n)(V12.03.27) return the greatest common divisor and lowest 

common multiple respectively for a pair of integers m and n. This can be useful in 

determining synchronisation conditions. 

echo(x) returns x but also prints it to the screen.  This is primarily for debugging functions. 

extract(<input>, <selection>) selects a subset of a supplied list, with the second 

argument supplying a list of indices (from 1) e.g. extract(<input>,1) would return 
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the first element of the list, extract(<input>,[1:3]) would return the first 3 

elements etc. 

head(<input>, <n>) returns the first n elements of a list (head). n defaults to 1 if 

omitted. 

if(<expr>,<true>,<false>) returns its second argument if <expr> evaluates to a non-zero 

quantity and the third argument otherwise e.g. if($n,2,4) will evaluate to 2 if $n is 

non-zero, 4 otherwise.  Since expressions return floating point numbers, it is important to 

ensure that a negative result is truly zero; use the rounding functions to ensure this if 

necessary.  There are no logical operators, but nested ifs can be used instead e.g. 

if(<cond1>,<cond2>,0) will return a non-zero result (<cond2>) if both conditions 

expressions evaluate to non-zero quantities, and zero otherwise.  

Indicesof(<spin type>) returns the index of spins of a given type within the spin system 

(V11.12.21) e.g. Indicesof(’1H’). Indicesof() returns a list of all the spin 

indices i.e. from 1 to the total number of spins. 

last(<input>, <n>) returns the last n elements of a list (head).  n defaults to 1 if omitted 

noise(x,n) returns n random numbers from a normal distribution of standard deviation x 

and zero mean. n defaults to 1 if omitted (V11.06.14). 

random(x,n) returns n (floating point) random numbers within the internal 0 to x. n defaults 

to 1 if omitted (V11.06.14).  Note the different ordering/use of arguments to the MATLAB 

random function. 

repeat(<input>, <n>) creates a list with <input> repeated n times e.g. 

repeat([2,3],2) evaluates to [2,3,2,3]. 

replace(<initial list>,<indices>,<value(s)>) (V09.08.26) selectively replaces elements 

of a list.  For each index in the index list, the corresponding element in the initial list is 

replaced by the value from the values list (which must be of the same length as the index 

list).  Alternatively if the values list has a single element, this value is used to replace all 

the selected elements.  

replace([1:5],[1,3],[3,1]) will return [3,2,1,4,5] 

replace([1:5],[1,3],0) will return [0,2,0,4,5] 

rev(x) returns the list x but with the elements in reversed order.  

sign(x) returns –1, 0 or 1 depending on whether x is negative, zero or positive.  Note that the 

comparison with zero must be exact, so this should be used carefully if x is non-integral. 

size(x) returns the length of a list x.  

switch/switchdefault(<expr>,<if 1>,<if 2>,… [<default>]) evaluates a different 

argument depending on whether the initial expression evaluates to 1, 2, 3 etc.  An error is 

generated if the expression fails outside the range of arguments (or is non-integral).  In the 

case of switchdefault, the final argument is evaluated if the expression is an integer, 

but fails out of range.  Hence switch(sign($x)+2,<if negative>,<if 

zero>,<if positive>) will return one of three values depending on whether x is 

negative, positive or zero.  

sync_ratio(<target ratio>, <max> [, <limit>]) takes the target ratio <t1>/<t2> and 

returns a pair of integers m and n whose ratio, m/n, approximates most closely to the 

target.  The maximum m or n is set by <max>.  The pair of numbers can be assigned 

directly to two separate variables, variable m,n sync_ratio(0.8,20), or can be 

pulled out from the returned two-member list using extract, head, tail etc.  The 

numbers can then be used to adjust timings / power levels so that two time-dependencies 

are properly synchronised and to determine appropriate ``synchronisation times’’.  If the 

optional <limit> argument is specified then the pair [0,0] will be returned if even the 

best ratio found deviates from its target by more than this value. 
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tail(<input>, <n>) returns the rest of a list after skipping the first n (default 1 if omitted) 

elements. 

Valueof(’<variable name>’) and Valuesof(’<variable name>’) return the current 

value of a variable (equivalent to $<variable name>)  or the full set of values that an 

arrayed variable can take (V08.03.01) e.g. for 

variable x {10,20,30} 

Valuesof(’x’) would return the (constant) value [10,20,30], while Valueof(’x’) 

would return 10, 20 or 30 depending on which row of the data set was being evaluated.  

This allows array variables to be “interrogated”.  Note, however, that Valuesof 

cannot be applied to expressions since their values are always context dependent. 

Errorof(’<variable name>’) and Errorsof(’<variable name>’) behave as above 

but return the “error” on the parameter rather than its value.  0 is returned if the parameter 

has no associated error.  The “errors” are initially the step values defined when the fitting 

parameter is created e.g. 20V2.  In the finalise block, the values reported are the 

errors determined in the fitting. 

Error(’<error text>’)  (V09.03.10) stops execution and reports the supplied error 

message.  This is useful when using if to check for out-of-bound quantities e.g. negative 

delay periods e.g. 

 function verifypositive if(#1<0,Error(’delay period must be 

>=0’),#1) 

 … 

 variable tau verifypositive($tr-$t180) 

 will create the variable tau with the value of $tr-$t180 if it is non-negative, otherwise 

an error will be reported and execution will stop. 

Warn(<message>) and WarnOnce(<message>)(V11.09.29) print warning messages, 

with the WarnOnce form only printing the message the first time the warning is raised. 

For example 

 function warnnegative [#1,if(#1<0,Error(’value is 

negative’)] 

 variable tau warnnegative($tr-$t180) 

   

() can be used to control evaluation order
32

 e.g. (3+$pw)*5. 

[] denotes a list e.g. [1,2]. Unlike the static arrays considered above, the elements do not 

need to be fixed and can be expressions themselves e.g. 

[sin($phase),cos($phase)].   Nesting of lists is not supported, so [[1,2],3] 

would be expanded to [1,2,3].  

”file” creates a “static list” of numbers from reading in a text file (as above). 

`<command>`  creates a list based on executing a command through the Unix shell.  The 

output of the command must be a simple list as for the ” “static” list generator above.  

Since this is only useful when data needs to be generated “dynamically” as a function of 

the state of the calculation, <command> will normally contain at least one $variable; a 

warning is printed if this is not the case.     

    

Expressions (and sub-expressions) that are constant (i.e. do not involve variable quantities) 

are evaluated when created.  Non-constant expressions are re-evaluated at the start of a new 

“row” (in strict order of their definition), after any arrayed variables ({}) have been updated.  

For instance, in  

variable pw 5 
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variable twopw 2*$pw 

twopw will be fixed at 10, whereas in 

variable pw {5,10} 

variable twopw 2*$pw 

the value of twopw is undefined until the start of the first row when pw is set to 5 and then 

twopw is evaluated to 10.  twopw will have the value 20 in the next row.  Note that 

twopw does not “have the value” {10,20} in the second example. 

The parameters of several instructions must evaluate to a constant quantities e.g. 

 sw1 = $spin_rate*$gamma_angles 

is invalid if spin_rate and/or gamma_angles are not constants (e.g. arrayed), since the 

spectral width in the indirect dimension must be constant across the entire simulation.  There 

are more constraints on the variability of parameters in multi-dimensional calculations 

compared to those in which the calculation rows are independent e.g. sw must be constant in 

the former case, but may vary from row to row in the latter case. 

In general, non-constant “expressions” are only valid within the “main loops” of pulseq and 

the proc blocks since they may depend on arrayed variables whose value depends on the 

data set row.  Similarly sum-arrayed variables are not well defined within the proc and 

finalise blocks for the same fundamental reason.  Warnings are generated if a variable 

appears to be used “out of scope” (V08.03.01). 

In rare cases it may be useful to alter the default behaviour of evaluating constant expressions 

using the functions const and mutable. const forces the contained expression to be 

treated as constant and so immediately evaluated), while mutable causes the expression to be 

treated as non-constant and so not evaluated.  Consider the expressions: 

variable vec1 repeat(random(1.0),4) 

variable vec2 repeat(random(mutable(1.0)),4) 

variable vec3 const(repeat(random(mutable(1.0),4)) 

In the first case, random(1.0) is immediately evaluated and vec1 is filled with 4 copies of 

the same random number (which may not have been the intention!).  In the second case 

declaring the argument of random to be mutable means that the random subexpression 

becomes non-constant and so will be evaluated 4 times to fill vec2. However, as a side-

effect, the complete expression vec2 is then non-constant and so will be re-evaluated (to give 

a different set of 4 numbers) at the start of each row of a calculation. In the final case, the 

surrounding const forces the expression to be evaluated and then “frozen” with 4 random 

values.  Alternatively the second argument of random  (V11.06.14) can be used to avoid this 

issue entirely!   

pNMRsim uses three distinct types of “variable” for storing quantities for subsequent recall 

with $<variable>: 

System variables: these can be real quantities, integers, or string quantities (although all 

string quantities are “read only” and can’t be used in expressions).  Their usage is 

defined internally, and so they are principally used to display information about the 

current state e.g. echo spinning speed = $spin_rate.   Currently defined 

system variables are 

alpha, beta, gamma: current powder Euler angles
33

 

spin_rate, rotor_angle 

sw, sw1 

np, ni: number of points in direct and indirect dimensions 

i_orientation, i_evaluation: index variables giving the current index (from 

0) into the powder orientation, and the number of times the calculation has been 
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evaluated (e.g. in optimisation/fitting).  (Explicit user-defined variables can be 

created for other indices e.g. {} and || arrays). 

pi: value of π. 

proton_frequency: proton frequency (MHz) or 0 if undefined. 

time: current time (zero at start of sequence).  Only valid during pulseq. 

cputime: elapsed CPU time (seconds) since pNMRsim started.   

rotor_phase: current rotor phase.  Only valid during during pulseq. 

name: “base” filename (stripped of leading directories and .in) 

final_chisquared, final_optimisation: store the final value of 2  or the 

value of the optimisation function for fitting and optimisation respectively.  These 

two variables can only be used in the finalise block. 

 

They can be used in expressions (if numerical) or where string arguments are used e.g. 

save, echo, (they are expanded to the current contents of the variable).  In situations 

where the variable name is not isolated, $(<variable>) can be used e.g. save 

$(name).fid.  The contents are undefined if a variable is accessed before it has 

been explicitly set (although this will usually be a default value).   

Substitution variables:  $n refers to argument n passed from the command line, or 

unquoted arguments to include. In addition, all caps variable names are assumed to 

be environment variables e.g. $HOME, and all occurrences of $<number> or 

environment variables are replaced as the first step in parsing each line of input (see 

“pre-parsing level” above).  

User variables: these refer to floating-point variables created with variable.  Their 

primary function is to connect together logically equivalent quantities into a single 

definition e.g. variable pw90 5. 

Although most quantities in pNMRsim must be uniquely defined in a single place, a 

variable can be redefined provided that its value evaluates to a constant.  Hence the 

following (rather silly example) will work 

addtwo { 

variable a $a+2 

} 

… 

 variable a 0 

 include addtwo [1:5] 

addtwo will be included five times and so the final value of a will be 10.  But if a had 

been declared as an array e.g. {0,10} or a fitting parameter e.g. 5V, then its definition 

cannot be changed.  This is because variables that evaluate to constants are substituted 

immediately and so it is irrelevant if their values are changed at some other point.  Non-

constant variables in contrast must be defined in a single place since they are “live” 

throughout a calculation.  Redefining a previously constant quantity as a non-const is, 

at least, poor practice, and will generate a warning (V11.06.14). 

 

Variable names must consist of alphanumerical characters (letters + digits) or underscores (_) 

and must start with a letter.  ALL CAPS variable names should only be used for environment 

(substitution) variables.  Variables and expressions can be used when the result is an integer, 

but the evaluation is always performed with floating point numbers and an error is generated 

if the final result is not close to an integer.   

User functions 

New functions can be created using: 
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function <name> <expression> [L|S]* 

Arguments to the function in the expression are denoted #n where n is the argument number 

(from 1).   The optional second argument whether where each argument should be passed as a 

list (L) or as individual scalar values (i.e. vectorised, or “threaded”), S.  For instance 

with function add #1+#2 SS 

add([1:3],[2:4]) gives [3,5,7] (both arguments vectorised) 

 

with function add #1+#2 LL 

add([1:3],[2:4]) also gives [3,5,7] since both arguments are passed as complete 

lists and the lists added. 

 

but function add #1+#2 LS 

add([1:3],[2:4]) gives [3,4,5,4,5,6,5,6,7] since first scalar 2 is added to list 

[1,2,3], then 3, then 4. 

 

If no flags are specified, all arguments are treated as scalar and the maximum value of n used 

in the expression defines the number of arguments
34

. 

The function definitions can be hard to read if multiple arguments are involved. From 

V15.08.13, it is possible to name arguments, and use the argument names rather than 

argument numbers e.g. 

function divide(top,bottom) #top/#bottom 

An empty argument name indicates that the argument will not be used.  

Functions that are not in use
35

 can be redefined although a warning is given.  Note that 

functions with the same name but different numbers of arguments count as different 

functions.  Previous definitions of functions are retained
36

 but mapped to the original name 

plus an additional underscore e.g. 

function sin sin_(2*#1) 

means that sin(x) will now return sin(2x)!    

Functions may be defined and used recursively e.g. 

function factorial if(#1,#1*factorial(#1-1),1) 

defines a factorial function, N! = N*(N–1)…*1. Such recursive definitions invariably involve 

an if statement to determine the end condition.  In principle any loop can be written in such a 

recursive fashion, although it is easy to write functions which never terminate... 

See extrafunctions.inc in the extras directory for examples of additional 

mathematical functions such as sinh, cosh etc. 

Command line arguments 

The full command syntax is 
pNMRsim [<flags>] <input file> [<arguments>] 

 

Valid flags are: 

-abort  By default a warning message is printed if a non-fatal problem with numerical 

convergence is detected, but the calculation continues.  If this flag is set, the calculation 

is forced to stop. 

-debug  turns up the verbosity (if output is turned on with verbose). 
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-enable:<option> and –disable:<option>  are used to explicitly enable or 

disable individual optimisations / optionals.  A positive –enable will in some cases 

force an optimisation when pNMRsim does not expect it to be appropriate and so 

should be used with care.  It also provides a quick way to check whether an 

optimisation is active; a warning is printed if a positively enabled optimisation could 

not be used.  The optimisations are 

 

cache Cache propagators for reuse.  Disabling caching may be 

useful if memory usage is a problem.  The simple transient 

mode can cause problems with propagator caching so small 

differences may be observed with and without caching. 

classicQ -enable:classicQ will force “classic” treatment of 

second order quadrupoles even in multi-spin systems where 

results may be incorrect (for spins coupled to second order 

quadrupoles).  Equivalent to SIMPSON. 

combinepropagators Use smart calculation of matrix powers when accumulating 

repeated identical propagators.  (This will not be possible in 

MAS simulations if the propagation period is not a multiple 

of the rotor period).  

EDmatching Special case where “excitation” and “detection” operators are 

matched and the spectrum is purely real.  Also a special case 

for heteronuclear decoupling. 

eigsymmetry Exploit the symmetry of the k eigenvalues (periodic 

problems only) 

forcepointbypoint Force each point of FID to be calculated by explicit 

propagation rather than re-using propagators. Enabling will 

make calculation very slow! 

gammacompute* Use -COMPUTE algorithm for  angle integration under 

MAS. The algorithm is disabled quite conservatively and can 

be explicitly enabled if required. 

generalisedQ Explictly enable algorithms for “exact” treatment of 

quadrupoles and coupled quadrupoles. 

mergeprocessing (V12.08.02) Merge initialproc contents to the start of 

proc if independent of summation loop. 

minimalupdating Only update propagators etc. if they become invalid 

mzsymmetry** Exploit the symmetry of the mz blocks  

mzblocking Exploit the mz block structure for spins not subject to RF  

parallel Distribute power averaging in a parallel computation (MPI or 

threading, as enabled at compilation). MPI will be used if not 

explicitly disabled, while the experimental multi-core code 

(V11.06.14) is only enabled by default in 

NMRSIM_NUM_CORES has been specified.    

partitioning Exploit the mz block structure for all spins (only relevant to 

Chebyshev propagation) 

periodic Exploit periodic symmetry (if cells specified) 

phasemodulation Use specialised code for sequences involving pure phase 

modulation.  See maxdt for an additional optimisation 

associated with this algorithm. The code will be turned off, 
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but can be specifically enabled in some cases where it is 

difficult to achieve synchronisation.  

preventoverwrite (V09.05.01) Prevent overwriting of existing files (by save).  

With the abort flag, execution will stop if a file would be 

overwritten.  Not enabled by default in pNMRsim i.e. –

enable:preventoverwite must be used explicitly. 

realhamiltonian Try to use a real (or diagonal) Hamiltonian rather than full 

complex 

smartprop (V11.03.06) Optimise cases where prop is used over 

regularly incremented durations by re-using previously 

calculated propagators (sub-optimisation of 

combinepropagators) 

synchronise Exploit synchronisation conditions between MAS, RF and 

observation 

*Can be forced (but with care!) 

**Not enabled by default–enable with care! 

 

-noshortcuts is a quick way to disable all these “short cuts”. There should be no 

discernable differences in the output with or without this option and this is only useful 

for debugging.  Individual optimisations can be controlled with enable and 

disable. –noshortcuts can be combined with enable to enable specific 

optimisations.  

-nochecks   disables various checks on the input spin system e.g. a test is performed by 

default if the powder averaging range has been restricted to verify that the Hamiltonian 

is indeed duplicated in the omitted regions of the integration sphere.  Similarly, the 

periodicity of the coupling network is checked for periodic systems.  If the input file is 

known to be valid from a prior run, this option can be used to disable these checks and 

(slightly) reduce the start up time.  –nochecks also prevents the display of some 

information messages e.g. estimates of calculation time that are otherwise displayed. 

-news  displays the “NEWS” file which summarises the pNMRsim version history. 

-noexecute  instructs pNMRsim to only read in the input file and output it on the 

standard output after applying any text and macro substitution.  This has two uses: 

checking that text/macro substitution is working as expected and creating a single input 

file that does not have any external dependencies (though include).  It will not find 

syntax errors or other problems in the instructions themselves. 

-randomise  randomises the starting point for the random number generator.  By 

default any random numbers e.g. for noise values will produced in exactly the same 

sequence each time the program is run e.g. results will be exactly reproducible.  

Randomising the generator ensures that different numbers will be generated in each 

run. 

-silent  disables normal message output e.g. fitting progress. 

-qualify <string>  appends <string> to the $name variable derived from the input 

file name.  This is useful for giving distinct names to the output of pNMRsim runs with 

different input arguments. 

-verbose:<option>  is equivalent to adding verbose <option> at the start of the 

input file, which is a convenient way of increasing the verbosity of the output without 

changing the input file. 

-version  (V08.03.01) outputs a string which can be used to identify the version of 

pNMRsim (format: year.month.date).  This is taken from the first entry of the NEWS 

file.  It also shows list optional features which may have been enabled at compile time. 
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Data fitting and optimisation 

Parameters are supplied to the fitting/optimisation routines via the par block instruction fit 

(data fitting) or minimise/maximise (optimisation)
37

.  Not all instructions apply to all 

cases e.g. noiselevel only applies to data fitting, while the choice of optimisation method 

applies to both fitting and parameter optimisation. 

Alternatively fitting / optimisation commands can be placed in an optimise block after any 

processing, but before any finalise block (V12.08.02). This allows reference to fitting 

variables created after the par block, and may be a more logical long-term siting for such 

instructions.  

fit exp <”experimental” data>*   supplies the data for fitting, in the form of the name 

of a 1D Simpson data file.  A warning is given if the spectral width indicated in the 

input file doesn’t match that of the calculation.  Multiple data sets can be fitted 

simultaneously by supplying a series of filenames with the order corresponding to the 

rows of the calculated data set.  Fitting is not enabled if no data sets are specified. 

 For each data set loaded with exp (or add), variables sw_exp<n>, np_exp<n> and 

ni_exp<n> are created containing the spectral width, number of (complex) data 

points and number of rows respectively from data set n (numbered from 1).  The 

spectral width is zero if it could not be determined from the file contents. 

fit add <”experimental” data>   [<row indices> [<column indices>]] [-time|-

frequency|-reversefrequency]  adds a single data to the fitting, optionally 

including range parameters that define subset of the data for fitting e.g. fit add 

mydata 1:5 will fit the first 5 data points of mydata.  Multiple fit add lines can 

be used to build a multi-row data set. If one set of indices are supplied, these are 

assumed to correspond to columns of the data set. To select whole rows use [] for an 

empty column selection e.g. fit add mydata 1:5 [].  

The optional –time or –frequency flags can be used to indicate whether the data is 

in the time or frequency domain (assumed default) where this cannot be deduced 

automatically (as is the case for SIMPSON format input).  This is of direct significance 

where a subset of the data is used as the spectral width will be scaled accordingly if the 

data is in the frequency domain. The –reversefrequency flag (V15.08.13) is 

useful for data that has been stored in “display” rather than the expected frequency 

order. 

maximise|minimise external <function> <arguments> uses an external 

function (supplied by a “module”) for optimisation rather than a simple sum.  The 

external function is supplied a data object containing the calculated spectrum and must 

return a simple number.  One (but not both) of external or sum must be specified 

for optimisation to be activated. The additional programming required by external 

can be avoided if the optimisation metric can be calculated in proc using e.g. 

 fill `<external command>` 

 on a single point FID will execute an external command (via the shell) and fill the FID 

with this value.  Optimisation on the sum of the FID is then equivalent to optimising on 

the value returned by the external function, and does not require new code.    

 

fit mask [<data set 1> <data set 2> … |<column mask> [<row 

mask>]] [–exclude|-reversefrequency] (V09.08.26)  restricts the fitting 

to a subset of the calculated / experimental data by selecting data points to include in 

the calculation of 
2
.  Selections are made using indices to include e.g. 1:10 would fit 

the first 10 points.  In the case of multiple data sets, a selection should be made for each 
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row in order.  For 2D data, the selection is made on the column indices and optionally 

on both columns and rows (to select a “rectangular” 2D subset).  The –exclude 

option inverts the selection i.e. the specified points are excluded.  With no arguments, 

any masking is suppressed. Note that the experimental and simulated data sets must 

already be the same size. Use the subsetting option of fit add if necessary to trim 

the experimental data to the right size. The –reversefrequency flag (V15.08.13) 

reverses the mask order, and is useful if the points ranges have been determined in 

software which numbers data points in “display” order rather than increasing 

frequency. 

fit|minimise|maximise method [-gradient|-simplex] [-

randomise]  [-real|-imag|-complex] [-no_eta_constraints]  

selects between a gradient descent fitting (default) and a simplex optimisation.  

Gradient descent methods are significantly more efficient, but do require reasonably 

good starting points.  Simplex is slow, but robust and should be used if gradient descent 

methods become unstuck. 

 The –randomise option randomises the starting point by adding  where  is the 

uncertainty on the parameter i.e. this starts the optimisation at a plausible point in the 

parameter space and the fitting should always converge on the same solution.  Further 

investigation will be necessary if it doesn’t!  

 The –real, –imag or –complex options (fit only) determine whether the data 

fitting is based on the full complex data set or just the real or imaginary component.  

Fitting the complex data set (default) includes more data and so should, in principle, 

give a higher quality fit, but fitting the real component only is often simpler. 

 The –no_eta_constraints flag (V08.03.01) disables the automatic creation of a 

0 to 1 value constraint on tensor  values.  Note that constraints are not created for 

tensor asymmetries specified in terms of xx–yy.   

fit|minimise|maximise iterations  [<max iterations>] defines the 

maximum number of iterations (fitting, default 100) or approximate function 

evaluations (Minuit optimisation).  The current setting is shown if a new value is 

omitted. A value of zero means that the trial function will be calculated without further 

fitting, which is useful for testing the starting parameters (V15.08.13). 

fit noiselevel <noise>* specifies the uncertainty on individual data points 

(assumed to be constant across the data set) i.e. the standard deviation of the noise.  

This is required for meaningful values of 
2
 and for proper parameter error estimates.  

If the noise level is not supplied, it is estimated from the standard deviation of the 

fitting residuals (reasonable if the systematic errors are negligible, but not otherwise).  

When fitting multiple data sets, the noise level ought to be an arrayed variable giving 

the noise level in the different (one-dimensional) data sets e.g. fit noiselevel 

{0.1:1}. 

fit normalise [<norm>] [-integral|-minmax|-abs]  (V09.01.03) 

normalises “experimental” and simulated data sets to avoid the need for an intensity 

scaling factor.  (The parameters are the same as the normalise processing directive).  

Note that the normalisation of the calculated data is enabled automatically and so any 

explicit normalise directive in the processing is redundant.  Note that the 

normalisation mode cannot be changed interactively.  

minimise|maximise precision <value> (V11.03.06) informs the optimiser 

(Minuit) that the internal precision of calculations is less than double precision e.g. 

minimise precision 1e-8 might be appropriate if calculations were only 

accurate to single precision.  Convergence might otherwise be difficult. 

maximise|minimise sum [<indices> [<row indices>]] indicates that the 

optimisation is to be performed on the sum of the spectrum (real part only) or a selected 

part of the spectrum specified by a set of indices e.g. sum 30:40 means the sum of 
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points 30 to 40 (see extract for more examples).  For 2D data, the first set of indices 

refers to the direct dimension and the second set to the rows (the rows are summed 

together if this is omitted). 

fit|minimise|maximise tolerance [<tolerance>] defines the stopping 

condition.  For fitting, this is the fractional difference in 
2
 below which the 

optimisation is taken have converged
38

 (default 10
–4

).  If the new value is omitted, the 

current convergence tolerance is shown.  In the case of simplex fitting, the user has the 

option of restarting the optimisation from the new starting point, which is often an 

effective strategy for pushing simplex along, and so it is often useful to lower this limit 

for simplex optimisations. 

At least one parameter of the simulation must be flagged as variable by including “V” in the 

parameter definition (see above).  As well as an initial value, each parameter must have a 

defined “error estimate” which sets the initial scale.  This defaults to 10% of the parameter 

value, but must be set explicitly if the initial value of the parameter is zero.  The “error 

estimate” is specified as a number following the “V” e.g. “0V100” sets the initial value to 

zero with an “error bar” of 100.  A trailing p indicates a ppm value and a % indicates a scaling 

factor e.g. “100V1%”.  The error estimate only needs to be of an appropriate order of 

magnitude, but an excessively small estimate may lead to slow convergence while an over-

large estimate may lead the optimisation astray.  

Unless normalisation is used, fittings generally require a variable scale parameter to correctly 

adjust the intensities of trial vs. experimental data sets.  This can be done explicitly by 

including scale <scale parameter>V in proc.  If this is not done, a suitable starting value 

will be suggested. 

Asymmetry parameters are not fitted directly as anisotropic parameters are more effectively 

defined for fitting purposes in terms of the anisotropy and “xx–yy” (anisotropy multiplied by 

asymmetry). 

Instructions to save the fitted data set or output parameters (e.g. via log_file) should be 

placed in the finalise block.  By default, if no finalise block is supplied when fitting, 

the fitted spectrum is automatically saved.  See save for options controlling what 

information is saved following a fit.  

More advanced optimisation 

Normally fitting / optimisation will involve a single pass set up using the directives above.  In 

more difficult multi-parameter fits, it may be necessary to optimise in more than step or 

explore the problem interactively.  This will typically involve “fixing” certain parameters and 

optimising a subset of the parameters before optimising a different set of parameters.  

Parameters can be referenced by index (increasing from 1 in the order of creation) or by a 

name which pNMRsim creates for each new fitting variable e.g. shift_1_aniso to refer 

to the anisotropy of the shift of spin 1. The output of fitting will show the names created for 

the different parameters. Multiple parameters with a common prefix can be selected 

(V12.08.02) using * to stand for any trailing characters e.g. t1_* would select all parameters 

starting with t1_. This is useful for applying e.g. the same constraint to multiple parameters 

created with an {} array. 

The relevant directives, which can be used with fitting or optimisation, are 

fix <parameters>+ e.g. fix 1 x fixes the values of parameter 1 and x. 

release [<parameters>+] allows the specified parameters to vary freely.  With no 

parameters, all parameters are allowed to vary. 

constrain <parameter> <min> -minimum|<max> -maximum|<min> <max> 

(V08.03.01) applies a constraint to the specified parameter, as a minimum (lower) 

bound, maximum (upper bound) or an allowed range
39

.  The constraint will not be 
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applied if the current parameter value falls outside the constrain (use set to move it).  

Note that the current restraint is replaced by the new one e.g. setting a minimum after 

setting a maximum will just constrain the lower limit i.e. constrain is not 

cumulative. 

unconstrain <parameters>+ (V08.03.01) removes any constraints from the 

specified parameters.  

set [<parameter> [<value>]] changes the value of a fitting parameter.  If the value is 

not specified, the current value of the parameter is given.  set on its own displays the 

values of all fitting parameters. 

error [<parameter> [<value>]] changes (or displays) the error estimate on an 

optimisation parameter.  The error can be specified as an absolute number or a 

percentage (e.g. 10%).  Percentages are expressed in terms of the value of the 

parameter as originally defined, not the current value of the parameter in a multi-step   

optimisation. 

run [-allowinteractive] starts the optimisation, stopping when convergence is 

achieved or the maximum number of steps is exceeded.  –allowinteractive flags 

that interaction with the user is allowed (relevant to simplex fitting).  If no explicit run 

directive is found, then the equivalent of run –allowinteractive is used to start 

the optimisation.  The new optimisation only replaces the starting point if it is 

successful. 

statistics [-release_constraints|-if_constrained] [-silent] 

(re)calculates the error values and statistics (e.g. correlation matrix).  The –silent 

option disables output (but still updates internal variables).   –

release_constraints performs the calculations with any constraints temporarily 

lifted. This will give more meaningful values for the errors, but may fail if parameters 

are at or very close to their limiting values. –if_constrained (V12.08.02) is 

equivalent to –release_constraints but the command is only executed if there 

are constraints to release. 

system <shell command> (V09.09.XX) executes the rest of the line via the “system” 

command.  This can be useful for starting display programs e.g. 

system simplot experimental.spe fitted.spe &  

 

interactive switches into an interactive mode in which optimisation directives are 

input and executed.  The following additional directives are only applicable to this 

interactive mode: 

finish indicates that the optimisation is complete.  The “finalise” block (if any) 

will be run on the basis of the last successful set of parameters. 

abort shuts down the optimisation and pNMRsim without running finalise. 

help displays the allowed directives. 

 

For example 

 fit fix 1 

 fit iterations 10 

 run 

 fit release 

 fit iterations 100 

 fit interactive 

Fixes parameter 1 and optimises for up to 10 iterations before allowing all parameters to vary 

and increasing the maximum number of iterations to 100.  The fitting then drops into 

interactive mode. 
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Parallel computation 

Parallel computation is extremely useful in solid-state NMR simulations since the 

computation often needs to be summed over multiple orientations or other inhomogeneous 

factors such as RF inhomogeneity.  The summations over the powder orientation and any || 

summation array are combined (V11.06.14), so that parallelisation will be effective when 

either or both summations are present. As of V11.06.14, two approaches can be used to split 

up a calculation over multiple processors (use –version to see which is enabled): 

MPI: MPI should be used to exploit large computational cluster systems.  The MPI code must 

have been enabled at computation and the resulting binary must be submitted through the MPI 

runtime system e.g. mpirun unless parallel computation has been disabled with –

disable:parallel.  One processor is used as a “master” to distribute chunks of works 

between “slave” processors, and so the maximum speed up is the number of processors 

requested from the MPI runtime minus one. 

Threading (V11.06.14): In this approach, the process splits into multiple “threads” of 

computation which a multi-core processor should automatically distribute between the 

different cores.  In this case the work is split into equally divided chunks between the threads, 

ensuring full use of all cores requested but also meaning that overall completion will be 

limited by the slowest core.  By default all available cores are used. This can be overridden by 

setting the environment variable NMRSIM_NUM_CORES to the number of cores to be used.  

This is useful to retain some processor cores for other jobs. 

Note that each execution thread runs independently.  Particularly in the threading approach 

this means that any text output from the parallelised pulseq block will be rather jumbled. 

Keeping things efficient 

Here are some tips for keeping your simulations as efficient as possible: 

 Comment out output lines (putmatrix, echo) and keep the verbosity to a 

minimum.  Don’t just to divert verbose output to a file; the output commands are 

intended to help debugging, not for efficient execution. 

 Keep it simple. The simpler your .in file, the more chance pNMRsim has of finding 

an efficient route. In particular, keep the number of RF channels to a minimum as this 

allows more blocking using the Fz quantum number. 

 Avoid changing the contents / timing of a pulse sequence fragment since this will 

force all stored propagators associated with that fragment to be discarded.   

 Try to ensure that sampling, rotation and RF are synchronised as far as possible e.g. 

adjust the RF power so that the TPPM decoupling period is an integral divisor of the 

rotor period.  If the two timescales are asynchronous, propagators needs to be 

integrated over the entire NMR signal / indirect time dimension, considerably slowing 

the calculation.  Note that the frequency domain calculations do not require 

synchronisation with the sampling rate. 

 Try to use acq rather explicit propagation using prop as optimisations are then easier 

to deduce.  If using prop, appropriate “synchronisation hints” can maximise the 

opportunities for re-use of previously calculated propagators (see store). 

 The calculation of phase modulated sequences under MAS is particularly efficient if 

all the elements have the same length (or rather the duration of each element is a 

multiple of the smallest). Gaps between pulses (strictly periods with a different, but 

common, amplitude) can be accommodated provided the restriction on the element 

durations is always satisfied. 

 Use coherence filters rather than explicit phase cycling. Similarly the transfer 

command is much “cleaner” and quicker than an explicit simulation of CP. 
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 Keep the number of distinct powder orientations to a minimum.  Restricting the 

orientations to a hemisphere tends not to help greatly, but restricting to an octant (for 

problems with a single principle axis) allows the number of orientations to be 

significantly reduced.  gamma_steps has a less direct impact, since the time-limiting 

step is the stepwise integration of the propagators i.e. maxdt has a big impact on the 

efficiency.  auto_opt can be used to optimise these parameters, but be careful not to 

significantly modify the problem after heavy tuning. 

 Use ideal pulses unless specifically interested in the effects of soft pulses. The 

propagators for ideal pulses can be calculated once and re-used.  pulse180 is 

especially useful if it allows an RF channel to be dropped.  Similarly, use 1
st
 order 

treatments of quadrupoles unless non-secular effects are important. 

 Start with x magnetisation where possible, rather than y or applying a 90 pulse to z 

magnetisation.  Similarly you may be able to avoid an explicit “read” pulse by using 

an appropriate detection operator.  

 You can use –nochecks to disable initial checking on problems which have been 

previously checked.  The savings in start-up time are unlikely to be noticeable 

(particularly for large problems), but it will get rid of many warning messages. –

silent will suppress all output. 

Are you sure you need pNMRsim? 

If you can do your simulations without significant pain in something like SIMPSON, do so.  

SIMPSON has been used and tested extensively, and the fact that it doesn’t try to be as clever 

makes it unlikely that obscure bugs will suddenly appear in unusual circumstances.   

 Sign conventions: the handling of signs/Euler angles etc. has not been rigorously 

evaluated. 

 Stability: pNMRsim is a work in progress which will evolve according to research 

interests and so is likely to remain in a “beta” state for some while.  If you can’t put up 

with new versions that add some features, break others etc., use SIMPSON!  If a 

calculation is behaving oddly, avoid multi-row simulations (where the 

miminalupdating optimisation may mess up) and try the –noshortcuts flag. 

 Specialisation: pNMRsim is designed to be efficient for multiple spin systems and 

flexible enough to handle a wide variety of problems as intuitively as possible. This 

means that it won’t always be as computationally efficient or user friendly for 

particular specialised tasks e.g. fitting of simple spinning sideband manifolds. For 

small spin system problems, however, its relative inefficiency may be outweighed by 

ease of use factors. 

 Support: although we like pNMRsim and are happy to see people use it, we are 

deliberately not trying to give it away, won’t accept any liability for mental distress or 

otherwise.   

                                                      
1
 SIMPSON:  acq (and pulseq) are procedures not blocks 

2
 In its previous incarnation initialproc was applied after powder averaging but before || 

summation arrays. Since its reintroduction in V12.08.02, the processing in initialproc is applied to 

every transient. This allows orientation-dependent processing but may considerably slow computations 

if used unwisely. The mergeprocessing optimisation allows an initialproc to be defined but 

its contents will be merged into proc if independent of summation variables.  
3
 SIMPSON: proton_frequency must be in par rather than spinsys, but this breaks 

pNMRsim’s “define before first use” rule. 
4
 The state restriction is incompatible with the “generalised” treatment of >1

st
 order quadrupoles. 

5
 Not all temporary propagators count towards this limit e.g. accumulated propagators in indirect 

dimensions.  Reaching the cache limit is used as a general signal that memory is tight and results in 

more temporary memory allocations being released. 
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6
 Parameters for the 3-angle ZCW sets kindly supplied by Matthias Ernst (ETH Zürich). 

7
 This can be combined with other arrayed variables / 2D, but the size of the 2D array can never exceed 

the number of powder orientations i.e. the powder orientation is never “looped”. 
8
 Unlike other commands, the rest of the line is treated as a whole and is not broken up into “tokens”. 

9
 Note that the defaults do not exactly correspond to –sw/2 and +sw/2; they are adjusted by half a bin 

width to ensure that zero frequency falls in the middle of a bin.   
10

 It is not possible to output the “current propagator” as this has no meaning in pNMRsim.  
11

 Pulse sequences work very differently in SIMPSON.  The propagation under a pulse sequence is 

essentially "interpreted", stepping through pulseq and accumulating propagators which can be stored 

and recalled. This is effective for simple problems, but makes it more difficult to express high-level 

concepts such as phase cycling.  
12

 The sign conventions used by the underlying library and earlier pNMRsim versions are such that the 

offset has the opposite sign to shifts.  The –version output from recent versions show which 

behaviour was defined at compile time. 
13

 By default, phases are expressed relative to a notional time origin and a correction is applied 

following an off-resonance pulse for the accumulated phase difference between on and off-resonance 

frames; the –coherent flag suppresses this frame shift. 
14

 Previous versions had a par version of prop for this purpose.  This has been dropped in favour of 

the more flexible include alternative. 
15

 SIMPSON: store simply stores the current propagator.  If you need to continue a previous 

fragment, use prop to insert the freshly stored fragment into the new sequence.  pNMRsim has no 

equivalent of reset (store automatically clears the current sequence).   
16

 The entire FID must be acquired in one shot (SIMPSON allows the signal to be acquired point by 

point).  This makes it much easier to look for optimisations. 
17

 In fact, if the sequence satisfies certain restrictions (see Keeping things efficient), it may be sufficient 

to integrate over a single rotor period rather than the entire synchronisation period.  The 

synchronisation period must still be specified in order to find the correct timebase for the algorithm.  
18

 The get directive subtly breaks this rule by allowing variables to be created which are not known at 

the start of the simulation. This limits the uses to which the values from get can be used to essentially 

output and reporting.  
19

 Note the differences from the SIMPSON main commands; no leading "f", data set is not specified 

(there is only one active signal). The other SIMPSON functions are not supported (they are more 

relevant to data processing rather than simulation). 
20

 The time domain and frequency domain versions of the mixed lineshape are not identical, but this 

differential definition is common (e.g. SIMPSON). 
21

 In SIMPSON usage, ranges are specified in terms of frequencies (which are then translated into 

discrete indices).  pNMRsim uses indices directly, although these may be computed using (constant) 

expressions. 
22

 Unlike SIMPSON, expressions involving coherence matrices are not accepted.  Such matrices only 

consist of 1s and 0s and so can’t really represent spin operators. 
23

 n0 can be used as a synonym for np. 
24

 The “if missing” text is expanded recursively so $(2?$1) will expand to the contents of $2 if it is 

defined or $1 if not. 
25

 Note that definitions such as variable and function must be used in or before the spinsys or 

par blocks.  
26

 The overhead of include is not large in any case.  Even in blocks which are “evaluated” repeatedly 

such as pulseq and proc, the parsing is only done once. 
27

 module loads are slightly different: the relevant system variable is LD_LIBRARY_PATH and this 

is only used if the module name does not contain a directory separator (/). 
28

 This will not fully work if expressions involving user defined variables e.g. $rf, need to be 

evaluated, since the variable directives will not have been executed.  Quoted arguments are not 

evaluated and so will not cause problems. 
29

 Dynamic loading will work on most Unix platforms, but is not compatible with Windows-based 

systems such as Cygwin. 
30

 This 10% default is inapplicable to parameters with default values of zero.  In this case, the 

uncertainty must be supplied.   
31

 In versions prior to V11.03.06, () was used to denote a “sum array”.  This, however, created a parsing 

ambiguity with () as a grouping operator. 
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32

 The order in which components of an expression are evaluated is not defined.  Some expression 

components, for instance, may not evaluate some arguments at all e.g. in 

if(N,extract(A,N),0), the extract(A,N) argument will only be evaluated if N is non-zero 

(otherwise extract would fail).  Since operations should not have side effects, evaluation order 

should not be significant.  
33

 The “gamma” angle is problematic since it is determined by a number of parameters; the powder 

averaging scheme, gamma_zero, explicit vs. implicit integration etc. As of V11.09.29 the value of 

$gamma is not well defined.  
34

 The number of arguments is determined by simple scanning of the text of the expression prior to full 

parsing of the expression. This could misidentify a character sequence as an argument in pathological 

cases, e.g. in `cat myfile#1` the #1 is part of a text string and not an argument.  The best solution 

simple solution is to specify the number of arguments explicitly with the L/S argument specification, or 

in current versions, use named arguments. 
35

 Like variables, “in use” means being part of an unevaluated expression.  For instance, if x is a 

constant, sin($x) would be evaluated immediately and so the sin function would not be “in use”.  If, 

however, x was not fixed e.g. variable x {0:10:90}, then the definition of sin must be 

preserved and redefinition is not permitted. 
36

 This contrasts with variables where new definitions silently overwrite previous ones.  While 

variables are naturally used as temporaries, function definitions are expected to be global and so 

overwriting definitions to change functionality always generates warning messages (disabled by –

nochecks or –silent).  
37

 Optimisation is only available if pNMRsim has been compiled with the Minuit optimisation library. 
38

 Note that Minuit defines its convergence parameter with a scaling factor of 10
3
.  As of V11.03.06, 

pNMRsim takes care of this difference in definitions automatically. 
39

 Note that if constrained parameters have “internal” values which differ from the corresponding 

“external” value.  The parameter values displayed during the fitting reflect these internal values and so 

can’t be directly related to the “normal” value of a parameter. 
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pNMRproc 
pNMRproc is essentially a cut-down version of pNMRsim for processing of data. It is 

particularly useful for batch processing of data or applying transformations not supported in 

normal NMR processing software. That said, the pNMRsim model doesn’t always sit easily 

with processing e.g. the number of data rows in fixed over the course of simulation, whereas 

this may changes in processing. This creates conflicts with features such as virtual 

dimensions.   

It is used in the same way as pNMRsim with the following differences: 

 The command line is pNMRproc [<options as pNMRsim>] <.in file> 

<data file> [<arguments] i.e. the input data file is specified explicitly.  Multiple 

data sets are not supported, since this can be handled more flexibly via command-line 

scripting. 

 The variable $name is set to the name of the input file (trimmed of directory information) 

rather than (as pNMRsim) the name of the .in file.  

 The only allowed blocks are an optional par block and an obligatory proc block. 

 sw, sw1, np and ni are taken, if possible, from the input data file, together with 

information about time vs. frequency domain, and referencing information (V11.06.14).  

The spectral widths can be set or overridden explicitly in par.  nD structure can be set up 

in the same way as pNMRsim, although support for >2D data sets is minimal.  

set/setdomain can be used to set/override information about the domains and/or 2D 

quadrature detection. 

 add <filename> [<scale>] adds another dataset (which must be of the same size) 

multiplied by an optional scaling factor (default 1). 

 autophase –zeroonly (V13.1.13) tries to automatically phase the spectrum based 

on a fairly crude algorithm that maximises the intensity in the real part of the spectrum 

(which will only work well with spectra with clean baselines and resolved peaks). The –

zeroonly flag restricts the optimisation to zero-order phase, which is useful for spectra 

where the first order correction is known to be negligible e.g. spectra taken from the top 

of an echo.  

 sum [<row indices>] adds all the rows of a 2D data set to create a 1D data set. Optionally 

(V15.08.13) a specified subset of the rows can be added together (and the remainder 

discarded).  

 baselinecorrect [<baseline range>] does a simple DC offset correction based on 

the average of the selected range of data points (selected by index). Note that this is 

applied individually to each row of a multi-row dataset which is likely to be the Wrong 

Thing for true 2D data. 

 splitsincos (V09.11.10) takes 2D SpinSight data in which cos and sin fids are 

combined in a single row and creates a “normal” hypercomplex data set with cos and sin 

fids in alternate rows. 

 ftindirect [(flags as for ft/ft2d)] performs Fourier Transformation in the indirect 

dimension only. 

 Write protection is enabled by default.  Use –disable:preventoverwrite to 

override this. 

 

Note that the output file will only contain information that pNMRsim/proc understands i.e. 

spectral widths, time vs. frequency domain, spectrometer / reference frequencies (V15.08.13).  

Any other metadata will be missing. The Matlab format preserves the most information, 

followed by the SIMPSON formats.  
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Notes 
 

Interoperability with SIMPSON 

Different design choices in pNMRsim mean that the input files are becoming increasingly 

incompatible with SIMPSON.  The pNMRsim2SIMPSON.sed sed script can be used to 

convert a pNMRsim file into something that is more likely to be SIMPSON compatible e.g. 

sed –f pNMRsim2SIMPSON < RR.in > RR_SIMPSON.in will create a SIMPSON 

input file from the pNMRsim input RR.in.  The script makes the following changes: 

The proc and pulseq blocks are turned into Tcl functions 

Arguments to verbose are discarded and replaced with a default 

Processing commands, addlb etc, are adjusted to SIMPSON usage (faddlb etc.) 

Any powder averaging qualifiers (:hemisphere etc.) are removed.  This may result 

in noticeably coarser sampling in the SIMPSON run. 

Commands unsupported in SIMPSON are stripped out (auto_opt, tolerance, 

precision, log_file, scalefirst etc.) 

Trailing Vs (following digits) are removed 

$(variable) is replaced by $par(variable) 

Lines immediately following ##DELETENEXT are removed.  The # line is a comment 

to pNMRsim (and SIMPSON), but instructs the conversion script to delete lines that 

are incorrect (or in the wrong place) for SIMPSON 

##DELETE strings are deleted; useful for commands that are valid (correct for) 

SIMPSON but not pNMRsim   

Some other minor differences can also be accommodated: 

Always include a channels directive in spinsys (even if blank).  SIMPSON insists 

on this. 

The method directive is ignored by pNMRsim, but can be included for compatibility 

with SIMPSON (which will run very inefficiently if method is set inappropriately). 

Don’t use F<op> to specify spin operators or omit Euler angles in interaction 

specifiers; SIMPSON will not accept these. 

More fundamental differences, in particular the different models for pulse sequences, cannot 

be readily accommodated by automatic translation and must be changed by hand. 

 

Future directions 
 

There are a number of things that pNMRsim is missing and which may (or well may not) be 

worth providing: 

 The number of data processing commands is more limited than in SIMPSON.  On 

balance, however, these belong more naturally in distinct data processing programs.  

In this spirit, pNMRproc provides some additional functions.  

 Relaxation and exchange: a full implementation, beyond the available manipulations 

of the density matrix, would require major additions to the underlying library and a 

separate Liouville-space version of pNMRsim. 

 

Known problems 
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 pNMRsim cannot always work out how to best exploit block structure (e.g. spotting 

double quantum operators), particularly if different parts of a simulation (with and 

without RF for example) have different structure. It would be difficult and error-prone 

to address this and the best approach for these problems would be to switch to 

describing the problem in sparse Liouville space. 

   


