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1. Introduction

Any longitudinal survey or experimental design raises concerns about sample selection and

attrition, and response rates may vary dramatically depending on the nature of the study and

incentives provided in the design. Controlling for endogenous effects of sample selection requires

some background information on subjects who did not select into the survey or experiment, so that

one can estimate a latent selection process and its correlation with a primary outcome of interest.

This information is often missing, and most longitudinal studies are concerned just with attrition

effects. For non-participants, attrition outcomes are also missing, and strictly speaking one cannot

control for attrition effects without addressing endogenous selection first. Without controlling for

selection effects, the estimates of a latent attrition process may be subject to selection bias even

when there is no effect of selection on the primary outcome.    

Using a structural model of risky choices which allows for endogenous sample selection and

panel attrition, we analyze data from a longitudinal field experiment with a stratified sample of the

adult Danish population. The data are linked to administrative data from the Civil Registry in

Denmark, allowing us to observe background information on non-participants. We illustrate the

importance of controlling for within-wave and between-wave effects of sample selection in the

evaluation of individual risk attitudes at different points in time.  

Temporal stability of risk preferences is a common assumption in evaluations of economic

behavior.1 Testing this assumption with the same individuals requires, of course, that one address

problems of sample selection and attrition. We design and evaluate a longitudinal field experiment

with a nationally representative sample of Danish adults between 19 and 75 years of age to address

this question, and provide a range of findings on temporal stability of risk preferences. The sample is

randomly drawn from the Civil Registry and stratified with respect to population size in each county.

1 The term stability can mean unconditional stability or it can mean stable preferences conditional on
a given set of covariates. In the latter case the question is whether preferences are a stable (and known)
function of those covariates (Andersen, Harrison, Lau and Rutström [2008; §2]). We consider both forms of
stability.
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Our design builds in explicit randomization on the incentives for participation, an idea suggested by

the theoretical literature on sample selection models and easy to implement in the sampling process

and subsequent experiment. 

The classic problem of sample selection refers to possible recruitment biases, such that

individuals with certain types of characteristics are more likely to be in the observed sample. The

statistical problem is that there may be some unobserved characteristics which simultaneously affects

someone’s chance of being in the sample as well as affecting other outcomes that the analyst is

interested in. In any longitudinal study, there is also an inherent scope for post-recruitment selection

bias due to panel attrition, which occurs as some subjects may leave the panel.2 We build on the

direct likelihood approach of Heckman [1976], Hausman and Wise [1979] and Diggle and Kenward

[1994] and use maximum simulated likelihood to estimate unique probit-kernel models that consider

the full longitudinal design of the experiment. Our models control for the effects of selection and

attrition on risk preferences inferred from both waves of the experiment, as well as addressing

unobserved heterogeneity in risk preferences of the underlying population.

We consider a structural analysis of two theories of decision making under risk, specifically

Expected Utility Theory (EUT) and Rank Dependent Utility (RDU), where the latter is a highly

influential alternative to EUT. Each theory has a set of structural parameters that characterize risk

preferences. Previous analyses of temporal stability do not control for recruitment bias, and focus

either on population averages of the structural parameters or on individual-level estimates which

have no structural link to the population distribution of risk preferences. In contrast, our analysis

controls for endogenous sample selection and attrition, and captures unobserved heterogeneity

around the population averages by modeling all structural parameters as individual-level random

coefficients that follow a population distribution. We allow the population distribution to vary over

2 The attrition problem is not the same as the dropout problem. As stressed by Heckman, Smith and
Taber [1998], the latter refers to subjects that leave some randomized program or intervention, but that
remain in the sample. The attrition problem concerns subjects that completely drop out of the sample.
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time, and the random coefficients to be correlated with the error terms in the selection and attrition

equations. 

This estimation approach allows us to consider temporal stability of risk attitudes at two

different levels, with and without controls for endogenous sample selection and attrition: (i) the

population level, by comparing the population distributions of structural parameters over time, and

(ii) the individual level, by considering the correlation between individual-specific random

coefficients over time. Our direct likelihood approach is inspired by the trivariate probit model of

Capellari and Jenkins [2004], which includes two different types of selection equations, but their

primary outcome equation is the linear index probit model and their selection equations do not

address selection bias in the sense of recruitment bias.3 We are not aware of past statistical models

that capture unobserved heterogeneity in latent structural parameters with controls for recruitment

bias and/or attrition bias in longitudinal studies.

No existing studies test temporal stability of risk attitudes in the context of a model that

addresses unobserved preference heterogeneity across the population. Glöckner and Pachur [2012]

and Zeisberger, Vrecko and Langer [2012] are so far the only studies that test temporal stability of

risk preferences at the individual level. But they do not consider temporal stability at the population

level and do not control for sample selection or attrition bias.4 

3 Capellari and Jenkins [2004] analyze the transition of poverty states in the UK using a first-order
Markov model. The primary outcome equation describes the present poverty state, and features parameters
that depend on the initial poverty state. The two types of selection equations correct for endogenous
selection into the initial poverty state and endogenous panel attrition.  

4 Glöckner and Pachur [2012] and Zeisberger, Vrecko and Langer [2012] estimate one set of
structural parameters for Cumulative Prospect Theory for each individual subject, and compare the point
estimates over one-week and one-month time periods, respectively. Their statistical tests of temporal stability,
however, do not fully account for random sampling variations in the estimates. Hey and Orme [1994] were
the first to consider individual level estimation of latent risk attitudes, which requires a sufficiently large
number of observations per subject; they had a sample of 80 subjects with 100 observations per subject.
Later applications of individual level estimation of latent preferences also consider individual discount rates
(Andersen, Harrison, Lau and Rutström [2014]) and intertemporal correlation aversion (Andersen, Harrison,
Lau and Rutström [2017]). Harrison and Swarthout [2016] estimate the full set of latent structural parameters
for Cumulative Prospect Theory at the individual level and find considerable variation in risk preferences. To
control for endogenous sample selection and/or attrition bias and study temporal stability at the population
level one must pool observations over all subjects and estimate the population distributions of individual
level coefficients, which we do. 
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Existing studies on temporal stability of risk attitudes do not control for selection bias, and

we are aware of only one study (Andersen, Harrison, Lau and Rutström [2008]) that controls for

attrition bias. In fact, most studies do not even make a passing reference to “sample selection” and,

perhaps more remarkably, “attrition” or “retention” (Smidt [1997], Goldstein, Johnson and Sharpe

[2008], Baucellis and Villasís [2010], Glöckner and Pachur [2012] and Zeisberger, Vrecko and

Langer [2012]). A recent study by Dasgupta, Gangadharan, Maitra and Mani [2017] reports a

significant difference in the sample average risk attitudes of the attrited and the retained, but does

not undertake statistical correction for attrition bias and does not mention selection bias.

We draw several conclusions from our statistical analysis. First, we find evidence that the use

of different fixed recruitment fees can affect the decision to participate in our experiment.5 When we used a

relatively substantial recruitment fee of 500 kroner, which is about 100 US dollars, 24.1% of invitees

accepted the invitation to the initial wave of our experiment. The initial acceptance rate fell to 18.1%

when we instead used 300 kroner. Of course, this is just a “law of demand” effect from paying more

money for people to participate, but demonstrates that there are indeed deliberate decisions being

made about participation. The second wave of our experiment paid the same recruitment fee of 300

kroner to every person, and there was no significant difference in the retention rates of subjects who

were initially recruited with the high fee (48.4%) and subjects who were initially recruited with the

low fee (54.7%).

Second, we find evidence that correcting for endogenous sample selection and panel attrition changes our

inferences about risk preferences in an economically and statistically significant manner. The results suggest that

one should not discount the potential effects of selection and attrition a priori, even when a self-

selected sample and an underlying population of interest look more or less similar in terms of

observed characteristics. Subjects participating in each wave of our experiments have demographic

5 Paying no fixed recruitment fee is not a panacea for the sample selection issues we consider: it just
masks it, and makes it impossible to evaluate since there is no variation in those fees. There are other sensible
reasons why one should avoid zero show-up fees, since that could generate altogether different, and nasty,
biases in sample selection documented by Kagel, Battalio and Walker [1979] and Eckel and Grossman [2000].
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characteristics that are comparable to the adult population in Denmark, but without correcting for

endogenous selection and attrition our EUT specification would have overestimated the average

Dane’s relative risk aversion in the first wave by a factor of about 2.6 Under RDU, non-linear

probability weighting, that captures pessimism or optimism in relation to objective probabilities, may

generate a positive or negative risk premium even when the individual is risk-neutral in terms of the

utility function. Without correction for endogenous selection and attrition, our RDU specification

would have substantially underestimated the population share of individuals who have an “inverse-

S” probability weighting function that captures optimism for small probabilities and pessimism for

large probabilities.

Finally, we draw mixed conclusions on temporal stability of risk preferences that depend on which aspect of

temporal stability one is interested in. The range of results reflect the strengths of our empirical

specifications that allow us to define and test temporal stability in several ways. For example,

consider risk aversion in the EUT sense of a concave utility function. Under both EUT and RDU,

we find that the average Dane is risk averse in this sense, and this conclusion is robust over time.

But we still find some instability in the population distribution of risk aversion, under EUT because

the average Dane becomes more risk-averse over time, and under RDU because there is a decline in

the extent of unobserved preference heterogeneity around the average. When focusing on the

within-individual autocorrelation of risk aversion, we find estimates between 0.40 and 0.45, which is

between the two extreme cases of completely unrelated and completely stable preferences. Of

course, under RDU risk preferences are also characterized by the probability weighting function. We

find more evidence on the stability of the probability weighting function than for the utility function,

both at the population and individual levels. 

6 Andersen, Harrison, Lau and Rutström [2008] analyzed the stability of risk preferences in the same
population between June 2003 and November 2004. They find evidence of stable risk preferences. Harrison,
Lau and Rutström [2005] focussed on the analysis of the first experiment in June 2003, and found that the
average Dane was risk averse. However, both studies did not randomize incentives for participation and did
not undertake correction for endogenous selection into the initial experiment. Nor did they consider
unobserved preference heterogeneity and the possibility of probability weighting under RDU.
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Our use of exogenously varied recruitment fees demonstrates how one can constructively

design features of a survey or experiment to facilitate empirical identification of sample selection

effects. Building on Heckman [1976][1979], the emphasis in the literature has been on the discovery

of some “exclusion restrictions,” referring to variables that affect the probability of selection but do

not affect the primary outcome of interest.7 The collection of these variables could be designed by

the surveyor or experimenter, but often were not.8 In most cases analysts simply have to live with

the existing set of variables in a survey or experiment, and search for exclusion restrictions on an a

priori basis. The later theoretical literature, typified by Das, Newey and Vella [2003], stresses the

value of direct controls over the probability of selection, rather than relying on some variables

selected on an a priori basis.

We know of only two applications of this constructive approach to building exclusion

restrictions into the experimental design.9 Each example made an important methodological step by

operationalizing a controlled basis for inferring selection bias or attrition bias. Nevertheless, neither

example had access to information on non-participants that we have, nor considered the interaction

between sample selection and panel attrition as we do.

The first example is the Survey Supply Experiment, undertaken as a module of the Index of

Hospital Quality survey. Philipson [2001] analyzed data from this experiment, in which 23% of

7 Without such “exclusion restrictions,” identification of sample selection models has to rely on the
validity of functional form assumptions alone, such as the bivariate normality of the error terms in the
maximum likelihood estimation of the standard Heckman model. Identification in this instance is formally
achieved, but is known to be “weak” (Meng and Schmidt [1985] and Keane [1992]). Exclusion restrictions are
formally required for identification when semi-parametric specifications are used (Lee [1995]).

8 It is folklore in survey research that information is retained on how many calls were made to a
subject, how hard they were to contact in other ways, or which interviewer conducted the survey. Although
not the object of randomization, information of this kind might be used as an instrument to model the
probability of selection.     

9 One may find more examples when focussing on conceptual plans instead of actual applications.
For instance, in evaluating the serious effects of attrition on psychotherapy, Leon et al. [2006; p. 1004] noted
in passing that a “... very simple, yet overlooked, strategy for dealing with the inevitable problem of dropout
is to collect data that can help predict attrition.” What they had in mind, following Demirtas and Schafer
[2003], was to ask subjects how likely it was that they would show up again, but they also raised the possibility
of offsetting transportation or logistical costs (p. 1004), which is related to our design with differential
financial incentives for participation. 
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potential participants were randomized to the treatment group that would receive 50 US dollars for

returning the survey questionnaire, whereas the control group faced no such incentive. The financial

incentive resulted in a higher response rate of 59.3% for the treatment group of 121 randomly

selected physicians, in comparison with a response rate of 50% for the control group of 298

physicians. The estimated mean income of the physicians in the sample became 50% larger after

correcting for selection bias. The missing information on non-participants, however, meant that the

effects of selection were identified by some strong ad hoc assumptions about the effects of the

financial incentive and survey response rates on the uncorrected mean income.10

The second example is the follow-up for the Longitudinal Movement to Opportunity

(MTO) field experiment, in which 30% of the sample was randomly assigned to more intensive

follow-up: see Orr et al. [2003; Exhibit B, §B1.3] and DiNardo, McCrary and Sanbonmatsu [2006].

This randomized follow-up was in addition to the primary randomization to treatment: (i) a housing

voucher with some strings attached and some counseling, (ii) a housing voucher with no strings

attached and no counseling, and (iii) a control group. This additional randomization to more

intensive follow-up had virtually no effect on results, however, since the effective response rates for

the long-term MTO follow-up were around 90% and similar across primary treatments

(Sanbonmatsu et al. [2011; p. 259]).11 

A key feature of the inferential problem considered in our experiment is that the “outcome

variable” of interest is a latent characteristic: risk aversion. The context is fundamentally different

from the cases that Philipson [1997][2001] considered, initially in a thought experiment (Philipson

10 Specifically, it was assumed that the uncorrected mean income was an increasing function of the
financial incentive (Philipson [2001, p. 1101]) and was linear in survey response rates (Philipson [2001, p.
1109]).

11 In many respects a similar methodological approach is employed by Behaghel, Crépon, Gurgand
and Le Barbanchon [2009]. They evaluate two independent surveys of virtually the same population of job
seekers in France: one survey involved a long telephone survey and had a 50% response rate, and the other
survey involved a short telephone survey, augmented by administrative data, and had a higher 80% response
rate. Using non-parametric methods from Horowitz and Manski [2000] and Lee [2009], they show that the
two surveys lead to dramatically different estimates of the effects of career counseling programs on job
search outcomes, arguing that the first survey suffers from severe selection bias.
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[1997, §3]) and later in an empirical analysis (Philipson [2001]), where one could use randomized

recruitment fees to remove selection bias from the estimated mean of an observable characteristic.

This also means that we cannot replace data from subjects exhibiting non-response with

administrative data, as many studies have done to assess the seriousness of sample selection and

attrition (e.g., Grasdal [2001], Behaghel et al. [2009] and Ludwig et al. [2013]). 

There is some evidence from clinical drug trials that persuading patients to participate in

randomized studies is much harder than persuading them to participate in non-randomized studies

(e..g., Kramer and Shapiro [1984; p.2742ff.]). The same problem applies to social experiments, as

evidenced by the difficulties that can be encountered when recruiting decentralized bureaucracies to

administer random treatments (e.g., Hotz [1992]). For example, Heckman and Robb [1985] note that

the refusal rate in one randomized job training program was over 90%. With the renewed popularity

of randomized control trials in social sciences, evaluation of the potential effects of “randomization

bias” is urgent.12 Our methods of controlling for endogenous sample selection and attrition have

broader applications to randomized control trials that consider causal effects of treatments on latent

variables of interest in economic policy, such as welfare effects (Harrison [2011]).

2. Data

A. Field Sampling Procedures

Between September 28 and October 22, 2009, we conducted an artefactual field experiment

with 413 Danes.13 The sample was drawn to be representative of the adult population as of January

1, 2009, using sampling procedures that are virtually identical to those documented at length in

Harrison, Lau, Rutström and Sullivan [2005]. We received a random sample of the population aged

12 This is also true, of course, for the effects of attrition in general. Hausman and Wise [1979; p.
455ff.] note that attrition “...may negate the randomization in the initial experimental design. If the
probability of attrition is correlated with experimental response, then traditional statistical techniques will lead
to biased and inconsistent estimates of the experimental effect.”

13 An artefactual field experiment is defined by Harrison and List [2004] as involving the use of
artefactual instructions, task and environment with a field subject pool.
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between 18 and 75, inclusive, from the Danish Civil Registration Office, stratified the sample by

geographic area, and sent out 1,996 invitations. We drew this sample of 1,996 invitees from a

random sample of 50,000 adult Danes obtained from the Danish Civil Registration Office, which

includes information on sex, age, residential location, marital status, and whether the individual is an

immigrant. Thus we are in the fortunate, and rare, position of knowing some basic demographic

characteristics of the individuals that do not agree to participate in our experiment.14

At a broad level our final sample is representative of the population: the sample of 50,000

subjects had an average age of 49.8, 50.1% of them were married, and 50.7% were female; our final

sample of 413 subjects had an average age of 48.7, 56.5% of them were married, and 48.2% were

female. We stress this comparison because it is often made to assuage concerns about sample

selection: check if the final sample is similar to the population in a few observed characteristics, and

then assume it is representative in all characteristics, including those that are latent and unobserved.

In the absence of the type of data we have access to in Denmark, this is a reasonable “second best”

procedure, but our results show that it may be an inadequate check on endogenous sample selection

effects.

The initial recruitment letter for the experiment explained the purpose and that it was being

conducted by Copenhagen Business School. The letter clearly identified that there would be fixed

and stochastic earnings from participating in the survey. In translation, the uncertainty was explained

as follows:

You can win a significant amount
To cover travel costs, you will receive 500 kroner at the end of the meeting.
Moreover, each participant will have a 10 percent chance of receiving an amount
between 50 and 4,500 kroner in one part of the survey. In another part of the survey,
each participant will have a 10 percent chance of receiving at least 1,500 kroner.
Some of these amounts will also be paid out at the end of the meeting, and some
amounts will be paid out in the future. A random choice will decide who wins the
money in the different parts of the survey.

14 It is possible to extend this list of characteristics by taking our experimental data to Statistics
Denmark, which stores the same data that we obtained from the Civil Registration Office, and merging it
with the entire set of data that is available on all of the invited subjects. One can then undertake the same
statistical analyses but with a larger set of co-variates to explain sample selection.
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The fixed amount is 500 kroner in the treatment that this text comes from, and 300 kroner in

another treatment. Subjects were randomly assigned to one of these two recruitment treatments.

The stochastic earnings referred to in the recruitment letter were for a risk aversion task and a

separate task eliciting individual discount rates. Thus the subjects should have anticipated the use of

randomization in the experiment.

The experiments were conducted in hotel meeting rooms around Denmark, so that travel

logistics for the invited sample would be minimized. Various times of day were also offered to

subjects, to facilitate a broad mix of attendance. The largest session had 15 subjects, but most had

fewer. The procedures were standard: Appendix A (available online) documents an English

translation of the instructions, and shows a typical screen display for the risk aversion task. Subjects

were given written instructions which were read out and then made choices in a trainer task for

small non-monetary rewards. The trainer task was “played out” and illustrated the procedures in the

experiment. All decisions were made on computers. After all choices had been made the subject was

asked a series of standard socio-demographic questions.

There were 40 risk attitude choices and 40 discounting choices, and each subject had a 10%

chance of being paid for one choice in each block of 40 choices. The risk attitude choices preceded

the discounting choices in one treatment, and vice versa in another treatment. Average payments for

the risk attitude choices were 242 kroner, and the average payments for the discounting choices

were 201 kroner (although some were for deferred receipt), for a combined average of 443 kroner.

The exchange rate at the time was close to 5 kroner per U.S. dollar, so expected earnings from these

tasks combined were $91. The subjects were also paid a 300 kroner or 500 kroner fixed show-up fee,

plus earnings from subsequent tasks.15

15 An extra show-up fee of 200 kroner was paid to 35 subjects who had received invitations stating
300 kroner, but then received a final reminder that accidentally stated 500 kroner. The additional tasks earned
subjects an average of 659 kroner, so total earnings from choices made in the session averaged 1102 kroner,
or roughly $221, in addition to the fixed fee of $60 or $100.
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Between April 2010 and October 2010 we repeated the risk aversion and discounting tasks

with 182 of the 413 subjects who participated in the first experiment.16 Each subject was interviewed

in private in the new experiment, and the meeting was conducted at a convenient location for them

(e.g., their private residence or the hotel where the first experiment took place). All subjects were

paid a fixed fee of 300 kroner for their participation in the second experiment.

Table 1 provides the sample response in each panel wave, and definitions of the explanatory

variables used in the statistical analysis and summary statistics. We observe a significant difference in

sample response with the high recruitment fee compared to the low recruitment fee. The drop from

24.1% to 18.1% in the first wave is statistically significant according to a Fisher Exact test, with a p-

value less than 0.001. After participating in the first wave, the sample response to recruitment into

the second wave was slightly lower for those recruited into the first wave with the high recruitment

fee compared to those recruited with the low fee. The sample response rates were 48.4% and 54.7%

in the second wave, and are not statistically different according to a Fisher Exact test with a two-

sided p-value of 0.24. One might infer from these statistics that the effects of attrition on elicited risk

attitudes are not significant, but of course that depends on who responded, which can only be

assessed with an appropriate statistical model.

B. Experiments to Infer Risk Attitudes

Risk attitudes were evaluated from data in which subjects made a series of binary lottery

choices. For example, lottery A might give the individual a 50-50 chance of receiving 1600 kroner or

2000 kroner to be paid today, and lottery B might have a 50-50 chance of receiving 3850 kroner or

16 There were four steps in the construction of this sub-sample. First, we divided the country into
five regions, and each region was divided into sub-regions. Each sub-region was assigned 1 or 2 numbers, in
rough proportionality to the population of the sub-region. In total we assigned 24 numbers. Second, although
Denmark is a relatively small country, it was necessary to consider logistical constraints, and we randomly
picked 12 of the 24 numbers for the experiment in April 2010 and the remaining 12 numbers for the
experiment in October 2010. Third, we picked the first 50% of the randomly sorted records within each sub-
region. This provided a sub-sample of 100 subjects for each experiment. Fourth, we contacted subjects by
phone and invited them to participate again in the experiments.
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100 kroner today. The subject picks A or B. We used the procedures of Hey and Orme [1994], and

presented each binary choice to the subject as a “pie chart” showing prizes and probabilities. We

gave subjects 40 choices, in four sets of 10 with the same prizes. The prize sets employed are: [A1:

2000 and 1600; B1: 3850 and 100], [A2: 1125 and 750; B2: 2000 and 250], [A3: 1000 and 875; B3:

2000 and 75] and [A4: 2250 and 1000; B4: 4500 and 50]. The order of these four sets was

randomized for each subject, with the probabilities varying within each set.17 We refer to the first

and last of these four prize sets as the “high stakes” lotteries compared to the second and third.

Each subject saw both the high stakes and low stakes lottery sets. All subjects in the experiment

were presented with the same set of decision tasks. 

We asked each subject to respond to all 40 risk aversion tasks and then randomly decided

which one to play out using numbered dice. The large incentives and budget constraints precluded

us from paying all subjects, so each subject was given a 10% chance to actually receive the payment

associated with his decision. The typical findings from lottery choice experiments of this kind are

that individuals are generally averse to risk, and that there is considerable heterogeneity in risk

attitudes across subjects: see Harrison and Rutström [2008] for an extensive review.

3. Identification of Risk Preferences

We first write out a structural model to estimate risk attitudes assuming EUT, to focus on

essentials. We then discuss how the likelihood function changes to account for sample selection and

attrition, and then finally discuss the extension from EUT to the more general RDU model.

17 Within each prize set the 10 choices were presented one at a time in an ordered manner, with the
probability of the high prize starting at 0.1 and increasing by 0.1 until the last choice is between two certain
amounts of money. 
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A. Baseline EUT Specification

Consider the estimation of risk preferences in the simplest possible model of decision-

making under risk, EUT, without worrying about sample selection or attrition. In our experiment,

each decision task presented a choice between two lotteries, and each lottery had two potential

outcomes. Let Mij be the jth outcome of lottery i, where i=A,B and j=1,2. Assume that the utility of

an outcome is given by the constant relative risk aversion (CRRA) specification

U(Mij) = Mij
(1!r)/(1!r) (1)

for r�1, where r is the CRRA coefficient. Then, under EUT, r=0 denotes risk neutral behavior, r>0

denotes risk aversion, and r<0 denotes risk loving behavior.

EUT predicts that the observed choice is lottery B when it gives the larger expected utility

(EU) than lottery A and vice versa. Probabilities for each outcome, p(Mij), are those that are induced

by the experimenter, so the EU of lottery i is simply the probability weighted average of its outcome

utilities,

EUi = p(Mi1) × U(Mi1) + p(Mi2) × U(Mi2), (2)

where p(Mi2) = 1 - p(Mi1). Let y denote a binary indicator of whether the observed choice is lottery B

(y = 1) or lottery A (y = 0). Using the indicator function I(.), the observed choice under EUT can be

compactly written as y = I[(EUB - EUA) > 0].

To allow observed choices to deviate from deterministic theoretical predictions, the EUT

model is combined with a stochastic behavioral error term. Specifically, assume that the choice

depends not only on the EU difference, but also on a random error term g such that y =I[(EUB -

EUA) + g > 0]. Assume further that g is normally distributed with the standard deviation of ì, g ~

N(0, ì2). The choice probability of lottery B is then Ö(LEU) where Ö(.) is the standard normal

cumulative density function (CDF), and the index LEU is given by

LEU = (EUB ! EUA)/ì. (3)

It follows that the likelihood function for each choice observation takes the form

P(r, ì) = Ö(LEU)y × (1 - Ö(LEU))(1-y) . (4)
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As the noise parameter ì approaches 0, this stochastic EUT specification collapses to the

deterministic EUT model; conversely, as ì gets arbitrarily large, it converges to an uninformative

model which predicts a 50:50 chance regardless of the underlying EU difference. This is one of

several types of behavioral error stories that could be used (Wilcox [2008]).  

To clarify our econometric methods, more notation is needed than one would typically see

in the context of non-linear models for panel data. We subscript the choice-level likelihood function

in equation (4) as Pntw(rnw, ì) henceforth, to emphasize that it describes subject n’s choice in decision

task t of panel wave w.18 The CRRA coefficient rnw is indexed by subject n and wave w for two

reasons. First, to capture unobserved preference heterogeneity across individuals, we model the

CRRA coefficient as an individual-specific random coefficient drawn from a population distribution

of risk preferences. Second, to test temporal stability, we allow the underlying population

distribution, as well as the CRRA coefficient drawn from it, to vary freely across waves. We use 

f(rn1, rn2; è) to denote the joint density function for the random CRRA coefficients, where è is a set

of parameters that characterize their joint distribution. 

It is possible to estimate the set of parameters è directly and draw inferences about the

population distribution of risk preferences, once the joint density f(rn1, rn2; è) is fully specified.

Assume that rn1 and rn2 are jointly normal so that è = (2r1, 2r2, ór1, ór2, ór1r2), where 2rw and órw are the

population mean and standard deviation of the CRRA coefficient rnw, and ór1r2 is the covariance

between rn1 and rn2. Conditional on a particular pair of CRRA coefficient draws, the likelihood of

observing a series of 40 or 80 choices made by subject n can be specified as 

CLn(rn1, rn2, ì) = (tPnt1(rn1, ì)                          if sn2 = 0 (5)

                       = (tPnt1(rn1, ì) × (tPnt2(rn2, ì)   if sn2 = 1

18 We repeated the same set of experiments across two panel waves, and within each wave the
subject completed a series of decision tasks over 40 lottery pairs. The outcomes and probabilities associated
with lottery pairs vary from task to task, and the same subject may make different choices across tasks and
waves. Each lottery outcome and its probability are then Mijntw and p(Mijntw), leading to the expected utilities
EUintw and the index function LEUntw. The indicator yntw is 1 (0) if subject n chooses lottery B (lottery A) in
decision task t of the experiment in wave w. 
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where sn2 is an indicator of whether subject n participated in only the first panel wave (sn2 = 0) or

both panel waves (sn2 = 1). Since rn1 and rn2 are modeled as random coefficients, the “unconditional”

(Train [2009, p.146]) or actual likelihood of subject n’s choices is then obtained by taking the

expected value of CLn(rn1, rn2, ì) over the joint density f(rn1, rn2; è)

Ln(2r1, 2r2, ór1, ór2, ór1r2, ì) = Ln(è, ì) = **CLn(rn1, rn2, ì)f(rn1, rn2; è)drn1drn2. (6)

Unobserved heterogeneity is similarly integrated out from many textbook models for panel data,

such as random effects probit (Wooldridge [2010, p.613]). Our application is distinctive because

unobserved heterogeneity enters the index function LEUntw non-linearly via the CRRA coefficient,

and varies across two wave-specific blocks of observations instead of being time-invariant. The

unconditional likelihood function Ln(è, ì) does not have a closed-form expression, but can be

approximated using simulation methods (Train [2009, p.144-145]). We compute maximum simulated

likelihood (MSL) estimates of risk preference parameters è and the behavioral noise parameter ì by

maximizing a simulated analogue to the sample log-likelihood function 'nln(Ln(è, ì)). The

estimation sample is 413 subjects who participated in the first experiment or both experiments.

Our modeling framework offers several ways to define and analyze temporal stability of risk

attitudes. One can test if the entire population distribution of risk preferences is stable, which can be

expressed as a joint hypothesis H0: 2r1 = 2r2 and ór1 = ór2. Alternatively, one can test the temporal

stability of the average person’s risk attitude (H0: 2r1 = 2r2), or test the temporal stability of unobserved

preference heterogeneity (H0: ór1 = ór2). We can also accommodate observed heterogeneity by

writing 2r1 and 2r2 as linear functions of the subject’s characteristics, such as age, gender and income.

It is then possible to consider the question of which demographic groups tend to be more risk

averse, and examine if the answer to that question is temporally stable. 

The questions so far pertain to temporal stability at the population level, but the analysis can

focus on temporal stability at the individual level as well. By normalizing the scale of covariance ór1r2,

one can derive a coefficient ñr1r2 = ór1r2 / (ór1 × ór2) that directly measures the within-individual

correlation of the CRRA coefficients over time. Andersen, Harrison, Lau and Rutström [2008] elicit
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risk preferences using multiple price list formats popularized by Holt and Laury [2002], and compute

this type of correlation based on the midpoints of CRRA intervals that predict observed behavior

under EUT. The approach we take here is far more general because it allows for behavioral errors

and can be applied with any elicitation format, as long as the statistical model incorporates a random

coefficient specification similar to ours. Moreover, as reported below, one can estimate the within-

individual correlations of structural parameters in an analogous manner after correcting for selection

and attrition biases and also in the context of RDU models.

  

B. EUT Specification with Endogenous Sample Selection and Panel Attrition

The experimental design allows us to correct for sample selection into both panel waves of

the experiment.19 Estimates of risk aversion could be sensitive to the sample selection and attrition

process in any longitudinal setting, and the estimated coefficients in the behavioral model may be

significantly biased if subjects condition their participation on unobservable characteristics that

correlate with their latent risk preferences. It is not obvious that individuals with stable preferences

are more likely to self-select into the early or later stages of our experiment. Since the decision to

participate in the experiment may be correlated with individual risk preferences, it is appropriate to

account for possible sample selection and attrition effects in the statistical model.20 

To control for sample selection bias, we take the initial pool of 1,996 invited subjects as a

random sample from the population, and model the initial selection process that lead to 413 subjects

in the first experiment. From this sample of 413, 354 subjects were invited to the second

experiment. To control for panel attrition bias, we take those 354 subjects as a random sample from

19 Vella [1998] surveys alternative specifications for modelling sample selection, including semi-
parametric methods.

20 Harrison, Lau and Rutström [2007][2009] use data from a single panel of a previous Danish field
experiment that was conducted in June 2003 and correct for sample selection in their analysis of risk
attitudes. They use an EUT specification of risk preferences and find evidence of sample selection. The
recruited sample of 253 subjects is significantly more risk averse than the general population, but the
estimated marginal effects of individual characteristics are similar with and without correction for sample
selection.
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the sub-population that self-selected into the first experiment, and model the attrition process that

led to 182 subjects in the second experiment. This general strategy is consistent with our

experimental design, under which the experimenter exogenously determines whether someone is

invited to the first experiment, and which subjects in the first experiment get invited to the second

experiment.

We first describe a system of binary response models that describes sample selection and

attrition. Let snw be an indicator of whether subject n accepted the invitation to the experiment in

wave w (snw = 1) or not (snw = 0). For those who were not invited to the second experiment, we set

sn2 = -1. Assume that each observed outcome snw is determined by a latent propensity Snw, such that

sn1 = I[Sn1 > 0], and sn2 = I[Sn1 > 0 1 Sn2 > 0] if subject n was invited to the second experiment. The

latent propensities are specified as

Sn1 = Xn1â1 + un1 = Xn1â1 + (an1 + en1) (7)

Sn2 = Xn2â2 + un2 = Xn2â2 + (an2 + en2) (8)

where Xnw is a vector of explanatory variables including a constant, âw is a conformable vector of

coefficients to estimate, and unw is a random disturbance. We decompose unw further into anw and

enw, which are orthogonal to each other. The term anw captures unobserved characteristics which are

potentially correlated with risk attitudes, and across selection and attrition processes. In contrast, enw

captures purely idiosyncratic errors. 

Assume that the correlated components an1 and an2 are bivariate normal, and that each

idiosyncratic error enw is independently normal. Under this assumption, the composite errors un1 and

un2 are also bivariate normal. When viewed in isolation from the random coefficient EUT model, the

system of equations (7) and (8) is analogous to the probit model with sample selection (Van de Ven

and Van Praag [1981]) which views the sample retention indicator sn2 as the primary outcome of

interest.21 It is common to normalize this type of model by setting Var(un1) = Var(un2) = 1, and

21 The first formal statement of the probit model with sample selection considered the case in which
the latent index was the difference in expected utility from two outcomes, which we denote by LEU: see Van
de Ven and Van Praag [1981; p.235, equation (8)].  
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identify â1, â2 and ñs1s2 = Corr(un1, un2) = Corr(an1, an2). We could follow the same convention, but

prefer to normalize the system by setting Var(un1) = 2 and Var(un2) = 2 + Cov(an1, an2), and identify

â1, â2 and ós1s2 = Cov(un1, un2) = Cov(an1, an2). This scheme allows us to assume Var(an1) = Var(en1) =

Var(en2) = 1 and Var(an2) = 1 + ós1s2 without loss of generality; then, equations (7) and (8) can more

easily be combined with the random coefficient EUT model by attaching probit probabilities to

equation (5), as shown below.  

Let g(an1, an2, rn1, rn2; È) denote a density function for the joint distribution of risk attitudes

and relevant selection/attrition errors, which is characterized by parameters in È. Let ós1rw and ós2rw

denote Cov(an1, rnw) and Cov(an2, rnw) respectively. We allow for the full set of correlations amongst

the four random components. Given the earlier assumptions, g(.; È) is then multivariate normal and

È = (è, G), where è = (2r1, 2r2, ór1, ór1, ór1r2) characterizes the population distribution of the CRRA

coefficients and G = (ós1s2, ós1r1, ós1r2, ós2r1, ós2r2) collects covariance parameters that may induce

selection and attrition biases. For example, a positive ós1r1 means that those with relatively large

CRRA coefficients in wave 1 are more likely to participate in the first experiment, and a positive ós2r1

means that such subjects with high CRRA coefficients in wave 1 are also more likely to participate in

the second experiment. Without correction for selection and attrition, one would overestimate the

initial degree of risk aversion in the population. While ós1s2 does not address risk attitudes directly,

this parameter corrects the attrition process for initial selection bias, since the attrition outcomes are

only observed for the self-selected sample of participants in the first experiment. If ós1s2 is falsely

constrained to 0, the resulting correction for attrition bias becomes invalid.  

We now turn to a likelihood function which augments the baseline EUT specification with

controls for selection and attrition biases. Conditional on a particular set of an1, an2, rn1 and rn2, the

joint likelihood of subject n’s selection/attrition outcomes and risky choices can be specified as 

          CLn(an1, an2, rn1, rn2, ì) = 1 - Ö(ôn1)                                                          if sn1 = 0 (9)

        = Ö(ôn1) × (tPnt1(rn1, ì)                                        if sn1 = 1, sn2 = -1 

                                    = Ö(ôn1) × (1 - Ö(ôn2)) × (tPnt1(rn1, ì)                   if sn1 = 1, sn2 = 0 

                                     = Ö(ôn1) × Ö(ôn2) × (tPnt1(rn1, ì) ×  (tPnt2(rn2, ì)  if sn1 = 1, sn2 = 1 
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where ônw = Xnwâw + anw, Ö(.) is the standard normal CDF and Pntw(.) is the choice-level likelihood

under the baseline EUT model. The exact form of the conditional likelihood function thus varies for

those who rejected the first invitation (sn1 = 0), those who participated in the first experiment but

did not receive the second invitation (sn1 = 1, sn2 = -1), those who participated in the first

experiment but rejected the second invitation (sn1 = 1, sn2 = 0), and finally those who participated in

both experiments (sn1 = sn2 = 1). The unconditional likelihood function for subject n can be

obtained by taking the expected value of CLn(an1, an2, rn1, rn2, ì) over the joint distribution of the four

random components 

Ln(È, ì) = ****CLn(an1, an2, rn1, rn2, ì)g(an1, an2, rn1, rn2; È)dan1dan2drn1drn2. (10)

where È = (2r1, 2r2, ór1, ór2, ór1r2, ós1s2, ós1r1, ós1r2, ós2r1, ós2r2) in full. Since equation (10) does not have a

closed form expression, we compute the MSL estimates of È and ì by maximizing a simulated

analogue to the sample log-likelihood function 'nln(Ln(È, ì)). The estimation sample is all 1,996

subjects who were invited to the first experiment.   

Parametric models with selection and attrition such as ours are theoretically identified

without the aid of cross-equation exclusion restrictions. Nevertheless, our experimental design

provides natural candidates for such restrictions that we use to assist empirical identification. The

initial invitation letter randomized subjects to different recruitment fees, and the longitudinal design

allows us to observe each subject’s additional earnings from the first experiment. Before coming to

the first experiment, subjects did not know anything about the 40 lottery pairs used and, during the

first experiment, everyone faced the same set of 40 lottery pairs. We assume that the recruitment

fees affect the initial decision to accept the first invitation, but do not affect the decision to accept

the second invitation once we control for additional earnings from the first experiment.22 We

maintain the usual hypothesis that the recruitment fees and prior earnings do not affect the subject’s

evaluation of lottery pairs directly. 

22 Additional earnings in the first experiment include payments for choices in three sets of decision
tasks which elicit individual risk attitudes, discount rates and correlation aversion, respectively. 
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The preceding discussion motivates us to include the recruitment fees only in Xn1 for the

selection equation, the actual earnings from the first experiment only in Xn2 for the attrition

equation, and the lottery payoffs and probabilities only in LEUnjt for the structural model of risky

choices. Our extended specifications condition LEUnjt on the subject’s age, gender and self-reported

income via the mean CRRA coefficient 2rw, to capture observed heterogeneity in risk preferences.

We include the same set of characteristics in Xn2, but only age and gender in Xn1 since self-reported

income is not available for those who rejected the first invitation.          

To see the flexibility of our extended specification, one may compare it with several special

cases. Consider first a “naïve” approach, in which each panel wave is evaluated separately, using

equation (7) to correct for selection into the first wave and equation (8) to correct for selection into

the second wave. This approach is naïve in the sense that it fails to recognize the longitudinal nature

of the experiments, and requires ós1s2 = ós1r2 = ós2r1 = 0. However, even when these restrictions are

valid, the approach cannot identify ór1r2 and hence ñr1r2 that measures the temporal stability of risk

preferences within individuals. Two special cases arise if both waves are analyzed jointly, but they

correct for only selection bias or attrition bias. With correction for selection bias only, one can

estimate all structural parameters consistently when ós2r1 = ós2r2 = 0. The other special case ignores

selection bias and requires ós1s2 = ós1r1 = ós1r2 = 0. The latter case is perhaps more interesting,

considering that it resembles what one would do in typical longitudinal studies that observe no

information on those who did not participate in the first wave. 

Our modeling strategy provides a general framework for the structural estimation of risk

preferences with correction for endogenous selection and attrition. While we parameterize the

statistical model using multivariate normal densities and probit kernels, with a few notational

changes the likelihood functions above can incorporate other joint distributions of {an1, an2, rn1, rn2}

and kernel CDFs. We focus on the multivariate normal-probit kernel specification primarily to reach

a wider audience; the workhorse sample selection models in the empirical literature assume either
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the bivariate normality of selection and structural errors or the marginal normality of selection

errors.  

 

C. Rank Dependent Utility Theory Specifications

RDU is a popular generalization of EUT, due to Quiggin [1982], that allows the decision-

maker to transform the objective probabilities presented in lotteries and use these weighted

probabilities to determine decision weights when evaluating lotteries. If w(p) is the probability

weighting function assumed, and each lottery has only two prizes such that Mi1 > Mi2, then we have 

RDEUi = [ w(p(Mi1)) × U(Mi1) ] + [ (1-w(p(Mi1))) × U(Mi2) ], (2N)

where RDEUi refers to rank dependent expected utility of lottery i, and the remaining notation is as

defined in the context of equation (2). 

 The logic behind our econometric specifications extends naturally to RDU, once we replace

EUi with RDEUi. Of course, one has to specify the functional form for w(p) and estimate additional

parameters. Prelec [1998] offers a two-parameter probability weighting function that exhibits

considerable flexibility. This function is

w(p) = exp{-ç(-ln p)ö}, (12)

and is defined for 0<p<1, ç>0 and ö>0. We use its one-parameter special case that assumes ç = 1,

and model ö as a log-normally distributed random coefficient önw that varies across individuals and

panel waves. The resulting one-parameter function exhibits inverse-S probability weighting

(optimism for small p, and pessimism for large p) for ö < 1, S-shaped probability weighting

(pessimism for small p, and optimism for large p) for ö > 1, and linear probability weighting that

reduces RDU to EUT when ö = 1.23 It rules out the cases of globally concave (optimism for all p) or

23 The one-parameter Prelec function is similar to another one-parameter function popularized by
Tversky and Kahneman [1992]: w(p) = pã /( pã + (1-p)ã )1/ã, which is inverse-S (ã < 1) or S-shaped (ã > 1).
When ö=1 and ç is a free parameter instead, equation (12) collapses to the power function w(p) = pç; this
function can capture either probability optimism (ç < 1) or pessimism (ç > 1), but not both at the same time.
There are several versions of the Prelec [1998] function, since several were specified in his Proposition 1
(p.503). We do not use his versions (A) or (B) that constrain ö to be in the unit interval, since that constraint
rules out “S-shaped” probability weighting a priori, which we view as an unattractive restriction. The one-
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globally convex (pessimism for all p) probability weighting a priori, and also implies that the fixed

point where w(p) = p occurs at p = 0.368 for any value of ö. The two-parameter function can admit

concave and convex cases, and also inverse-S or S-shaped probability weighting with other fixed

points. But allowing for the unrestricted joint distribution of random coefficients and

selection/attrition errors leads to several extra parameters, making the use of the two-parameter

function less practical for our purposes.24

One implication of the RDU model is that risk preferences are characterized by more than

the concavity of the utility function. The risk premium is a complex function of all of the parameters

that define the utility function as well as the probability weighting function. Indeed, a concave utility

function might be mitigated by probability “optimism” such that the net effect is risk neutrality or

even risk loving. We simply have to examine all parameters to characterize risk preferences in the

case of RDU: r and ö.25

4. Results

We are interested in testing several hypotheses. First, is the distribution of risk attitudes in

the general adult Danish population temporally stable over the one-year period we consider in the

parameter function we use is a special case of version (C) in his Proposition 1.
24 Allowing for the full set of correlations amongst two CRRA coefficients, two probability weighting

coefficients, the selection error and the attrition error mean that the RDU specification with the one-
parameter Prelec [1998] function already involves at least 13 more parameters to estimate than the EUT
specification. The variance-covariance matrix of random parameters rn1, rn2, nn1, nn2, an1 and an2 is a 6-by-6
matrix with 15 distinct covariance parameters and 4 identified variance parameters. In comparison, the EUT
specification involves 6 covariance parameters and 2 identified variance parameters. One should also estimate
the population mean parameters for nn1 and nn2, and those of rn1 and rn2.. Of course, the number of extra
parameters increases even further when the mean parameters for the probability weighting function are
conditioned on observed characteristics. We have also estimated the RDU model with the two-parameter
Prelec specification and the results are available upon request. However, under this specification, one cannot
easily define temporal stability of the probability weighting function. For example, one cannot identify the
average or median person. While it is straightforward to identify the mean and median of each parameter
separately, a person with a mean or median value of ç does not necessarily have a mean or median value of n. 

25 The EUT model retains some descriptive value, however. The EUT and RDU models explain the
overall risk premium, even if they explain it differently. It is sometimes useful to focus on the parameter r in
the EUT model as a summary statistic on the overall risk premium, even if the RDU model may provide the
correct structural decomposition into aversion to outcome variability (the r parameter) and probability
weighting (the n parameter).
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experiment? Second, are risk attitudes temporally stable at the individual level? Third, does the

possibility of non-random sample selection and attrition change our inferences about the temporal

stability of risk attitudes?

We use maximum simulated likelihood to estimate the full statistical model that captures

unobserved preference heterogeneity, endogenous selection into the first experiment, and

endogenous panel attrition between the two experiments. Train [2009] provides details on MSL

estimation of heterogeneous preference models without selection. Cappellari and Jenkins [2004]

show how one can control for endogenous selection and attrition using MSL in the context of

models without unobserved preference heterogeneity. By modeling the joint likelihood of observing

the entire series of responses by each subject and adjusting standard errors for clustering at the

subject level, our statistical specification allows for “clustered” responses by the same subject. Panel-

robust Wald statistics are used to test various hypotheses with respect to the estimated coefficients.

The statistical model also allows for heteroscedasticity in the behavioral error term, by conditioning

the Fechner noise parameter on binary variables for each treatment in the experimental design; one

variable captures the order of risk aversion and discounting tasks, and the other variable captures

our use of high and low stakes in the risk aversion tasks. We also condition the population mean

coefficients of latent risk preference parameters on these two treatment variables.

We transform several estimates into alternative forms that are easier to interpret. The tables

below report correlation coefficients instead of covariance parameters. In case of the log-normal

random coefficient ö in the RDU model, all results are for ö itself instead of ln(ö).26 Finally, we

divide selection and attrition equation coefficients by the normalized standard deviation of each

equation so that they can be interpreted in the same manner as familiar probit coefficients.             

26 Specifically, we report the mean of ö for the base group (constant), along with the marginal effect
of each observed characteristic on the mean of ö for the base group. The standard deviation of ö is evaluated
at the sample average characteristics. The within-individual correlation of ö is computed by applying the usual
formula for the correlation coefficient of bivariate log-normal random variables. Other correlations involving
ö present cases where we compute the correlation between a log-normal random variable and a normal
random variable. Garvey, Book and Covert [2015, p. 443, Theorem B.1] provide a closed-form formula that
can be applied to these cases.     
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A. Temporal Stability of Risk Attitudes

We find mixed evidence of temporal stability for inferred risk attitudes under EUT when the

model fully corrects for endogenous sample selection and attrition bias. Table 2 contains these

results, including single hypothesis tests that the mean CRRA parameter 2rw for each treatment group

is the same over time. For example, the estimated mean coefficient of relative risk aversion in our

baseline treatment is equal to 0.378 in wave 1, and equal to 0.678 in wave 2; the estimated difference

in the two mean population coefficients is equal to 0.300, which is significantly different from 0 with

a p-value of 0.017. We also find that the estimated population mean coefficient is larger in wave 2

relative to wave 1 when we control for the high stakes treatment; the estimated difference between

the two coefficients is 0.276, which is significantly different from 0 with a p-value of 0.024.

However, we find that the estimated population standard deviation of relative risk aversion is

temporally stable; the estimated standard deviation of the r parameter, ór, drops marginally from

0.726 in wave 1 to 0.705 in wave 2, and the estimated difference between the two coefficients is not

significantly different (p-value of 0.754). A joint test of estimated mean population coefficients and

standard deviations across the two waves allows us to evaluate whether the entire population

distribution is temporally stable. The ÷2(4) test statistic has a p-value of 0.110, so we cannot reject the

hypothesis of temporal stability at the 10% significance level.27 Although the estimated population

mean is significantly higher in wave 2 compared to wave 1 for low and high stakes treatments, we

find statistical evidence of temporal stability for the entire population distribution of relative risk

aversion.

The upper panel in Figure 1 shows the estimated population distributions of relative risk

aversion across the two waves and two monetary treatments, with controls for non-random

selection and attrition bias. We observe very small differences in estimated populated distributions

27 Since the mean of the r parameter has been conditioned on two treatment variables, in each wave
there are 3 estimates associated with the mean (constant, RAfirst, RAhigh). Temporal stability of the
population distribution therefore entails 4 between-wave equality restrictions, comprising 3 restrictions on
the mean and 1 restriction on the standard deviation.
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across the two monetary treatments in both waves, but the population distributions of relative risk

aversion for both monetary treatments shift to the right in wave 2 compared to wave 1, and illustrate

the statistical test results reported above. 

We also consider temporal stability at the individual level. The estimated correlation

coefficient between relative risk aversion in wave 1 and 2, ñr1r2, is equal to 0.410, which is

significantly different from 0 (p-value of <0.001). The significant positive correlation suggests that

risk preferences are temporally stable at the individual level, in the sense that someone with an

above-average r parameter in wave 1 also tends to have an above-average r parameter in wave 2, and

thus we reject the hypothesis that the two population distributions are independent. 

Turning to the results for RDU in Table 3, we draw similar mixed conclusions that depend

on which aspect of temporal stability that one is interested in. Under RDU, risk preferences are

characterized by the r parameter as well as the weighting parameter, ö, which is log-normally

distributed. The entire population distribution of risk preferences may be said to be stable when the

joint distribution of r and ö is stable. More formally, this joint hypothesis requires stability in the

estimated the population means of the r and ö parameters, the estimated population standard

deviations of r and ö, and the estimated correlation between r and ö. We reject this type of temporal

stability; the associated ÷2(9) test statistic has a p-value less than 0.001.28 

Figure 2 displays the estimated population distributions of relative risk aversion for each

wave and monetary treatment. The estimated distributions in the upper panel control for selection

and attrition bias, and we observe the same pattern as before: the population distributions of the r

parameter for both monetary treatments shift to the right in wave 2 compared to wave 1, and we

observe small marginal effects of the monetary treatments on elicited risk attitudes. We also observe

that the population distributions in wave 2 have a smaller standard deviation than the distributions

28 For the same reasons as discussed in footnote 27, the stable marginal distribution of the r
parameter entails 4 restrictions. Similarly, the stable marginal distribution of the ö parameter entails another
set of 4 restrictions. In total, temporal stability in the joint distribution of r and ö parameters entails 9
between-wave equality restrictions: 8 restrictions on the marginal distributions and 1 restriction on the
correlation coefficient between the two parameters.
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in wave 1; the estimated standard deviation is 0.612 in wave 1 and 0.491 in wave 2, and we reject the

null hypothesis that the estimated difference in the two coefficients is equal to 0 at the 10%

significance level (p-value of 0.058). The estimated correlation coefficient between the population

distributions of the r parameter over time, ñr1r2, is equal to 0.437, which is slightly higher than the

estimated coefficient under EUT, and we cannot reject the hypothesis that the two distributions are

dependent. 

The estimated population distributions of the probability weighting parameter ö are

displayed in Figure 3. The distributions in the upper panel control for selection and attrition bias,

and we again observe small marginal effects of the monetary treatment on the estimated population

distributions in each panel. However, we do observe differences in the estimated population

distributions of the ö parameter between the two waves, and we reject the hypothesis that the

population distribution of the ö parameter is temporally stable at the 10% significance level; the ÷2(4)

test statistic has a p-value of 0.051. We cannot reject the hypothesis that the estimated population

means are different between the two waves (the ÷2(3) test statistic has a p-value of 0.384), but we

find that the estimated standard deviation is significantly higher in wave 2 compared to wave 1 (p-

value = 0.019) which generates the instability over time. Despite these differences in the estimated

population distributions, we find that the estimated between-wave correlation of the ö parameter is

0.852 with a standard error of 0.055, which suggests that there is a strong degree of temporal

stability at the individual level. 

B. Effects of Sample Selection and Attrition on Risk Attitudes under EUT

We observe significant evidence of exogenous and endogenous selection and attrition effects

on the estimated coefficients reported in Table 2. We find a positive significant effect of the higher

recruitment fee on the propensity to select into the first wave of our experiment. In effect, the law

of demand applies to participation in the experiments, and response rates increase significantly when

the recruitment fee is raised from 300 kroner to 500 kroner for participation in wave 1. Middle aged
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and older subjects are also more likely to select into the first wave compared to omitted age group.

However, it is generally difficult to explain panel retention rates in terms of observed characteristics,

although the results do suggest that young subjects and those with high income are less likely to

select into the second wave than otherwise.

Turning to endogenous effects of sample selection and attrition, we find enough statistical

evidence to reject the hypothesis of no selection and attrition bias, respectively. The hypothesis of

no endogenous sample selection bias is evaluated using the joint test of H0: ñs1s2 = ñs1r1 = ñs1r2 = 0.

This hypothesis is rejected, with a p-value less than 0.001. The hypothesis of no endogenous attrition

bias can be tested by H0: ñs2r1 = ñs2r2 = 0, which again is rejected, with a p-value less than 0.001. The

estimated correlation coefficient between the error terms in the selection and attrition equations,

ñs1s2, is equal to -0.533 with a standard error of 0.079, which means that one cannot take the naïve

approach of correcting for each source of sampling bias separately. 

We can see the overall effects of controlling for selection and attrition bias on the estimated

population distributions of relative risk aversion in Figure 1. The results suggests that neglected

selection and attrition biases may lead one to draw opposite conclusions about the source of

instability. The lower panel shows the estimated distributions with no correction for sample

selection and attrition bias, and we observe that over time the distribution becomes tighter around

the almost invariant average.29 In contrast, the corrected estimates in the upper panel suggests that

there is an increase in the average relative risk aversion over time, and that the spread of the

distribution around the average remains more or less stable.

C. Effects of Sample Selection and Attrition on Risk Attitudes under RDU

We observe similar exogenous sample selection and attrition effects under RDU compared

to EUT, and continue to observe significant selection and attrition bias under RDU. The hypothesis

29 Table B1 in Appendix B reports the estimated parameters for the EUT model with no correction
for selection and attrition bias. 
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test of no sample selection bias now involves the correlation coefficients between the error term in

the selection equation and the five other random components (the error term in the attrition

equation, two r parameters, and two ö parameters). This hypothesis is rejected at all conventional

levels, since the p-value less is than 0.001. The hypothesis test of no attrition bias involves the

correlation coefficients between the error term in the attrition equation and four structural

parameters (two r parameters, and two ö parameters) and we again reject the null hypothesis of no

attrition bias (the p-value is less than 0.001). The estimated correlation coefficient between the error

terms in the selection and attrition equations, ñs1s2, is equal to -0.236 with a standard error of 0.089,

and we can again reject the naïve approach of correcting for each source of sampling bias separately. 

Figure 3 displays the overall effects of controlling for selection and attrition bias on the

estimated population distributions of the probability weighting parameter. The lower panel shows

the estimated distributions with no correction for sample selection and attrition bias, and here we

find statistical evidence of temporal stability.30 More specifically, without corrections for non-

random selection and attrition bias, we cannot reject the null hypothesis that the population

distribution of the ö parameter is temporally stable (the ÷2(4) test statistic has a p-value of 0.100).

Viewed another way, the uncorrected estimates of the probability weighting parameter seem

relatively stable around biased base levels, whereas the corrected estimates point to some statistical

evidence of temporal instability. We also observe that the shape of the population distribution for

the weighting parameter changes when we correct for selection and attrition bias. Figure 3 shows

that the population distribution of the ö parameter is more skewed to the right in the upper panel

with corrections compared to the lower panel without corrections. A larger fraction of subjects can

be classified by an inverse-S shaped probability weighting function when we correct for selection

and attrition bias compared to the non-corrected estimates. 

We can look closer at the effect of adding controls for sample selection and attrition on risk

attitudes under RDU. The effects on the mean of the r parameter are modest: estimates of concavity

30 The estimated parameters are reported in Table B2 in Appendix B.
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slightly decline in both wave 1 and wave 2 when we control for selection and attrition bias, so the

risk premium derived from utility concavity, ceteris paribus, is lower. The effect on the mean of the ö

parameter is more striking, and shown in Figure 4. The top 4 panels of Figure 4 refer to the

estimates with no corrections for sample selection and attrition, and the bottom 4 panels refer to the

estimates with corrections for sample selection and attrition. The panels on the left are, of course,

the implied probability weighting functions. The panels on the right are designed to allow one to see

the implied decision weights, which are what is important in the end. Consider the decision weights

shown in the top right panel. Each line shows the implied decision weights for an equi-probable

lottery. One is for a 2-prize lottery with probabilities ½ and ½, one is for a 3-prize lottery with

probabilities a, a and a, and one is for a 4-prize lottery with probabilities ¼, ¼, ¼ and ¼. These

examples are deliberately using uniform probabilities of outcomes so that one sees the pure effect of

probability weighting. 

Based on Figure 4, we can infer the effect of probability weighting on risk attitudes for the

average Dane. In the top panel we have no corrections and the estimates for wave 1. The “S-shape”

of the probability weighting function leads to a negative risk premium for the 2-prize lottery, ceteris

paribus, since the decision weight on the worst outcome is lower than ½ and the decision weight on

the better outcome is greater than ½. For 3-prize or 4-prize lotteries the effect is to lead to under-

weighting of extreme outcomes and over-weighting of interior outcomes. In wave 2 we see even

greater probability weighting with no corrections, also consistent with “S-shaped” probability

weighting. The effect of corrections on inferences are striking: the evidence for probability

weighting virtually disappears in wave 1 and is dramatically reduced in wave 2. The general lesson

here is that one might have concluded that there was significant evidence of strong probability

weighting without correcting for sample selection and attrition bias, when in fact the evidence for

probability weighting is very slight.
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D. Incorporating Observed Heterogeneity

We have estimated the population distributions of structural parameters to account for

interpersonal heterogeneity in risk preferences. An alternative way to capture preference

heterogeneity is to generalize representative agent models by allowing structural parameters to vary

with observed personal characteristics. This type of observed heterogeneity can be incorporated into

our analysis by conditioning the population mean of each parameter on the decision maker’s

characteristics, in the same manner as we have conditioned the mean of each parameter on the

treatment variables. 

For illustration, we replace the two treatment variables with a female dummy and estimate

models that focus on the overall male-female differences in risk preferences. Despite the common

assertion that women are more risk averse than men, the supporting evidence is not ubiquitous and

previous studies in Denmark do not find significant male-female differences in risk attitudes

(Harrison, Lau and Rutström [2007; p.361]). Figure 5 displays the estimated population distributions

of the r and ö parameters under the RDU model with correction for selection and attrition biases. In

either wave, we do not observe any significant male-female difference in the population mean

parameter, both in terms of the utility function and the probability weighting function.31 We draw

qualitatively similar conclusions about temporal stability for both men and women: there is a

significant between-wave change in the mean of the r parameter (p-values of <0.001 for men and

0.048 for women) but not in the mean of the ö parameter (p-values of 0.657 and 0.774, respectively).

The hypotheses of no selection bias and no attrition bias are rejected at the 1% level. Without

correction for selection and attrition biases, we would have found a significant between-wave

change in the mean of the ö parameter for men but not for women (p-values of 0.081 and 0.148).32

31 The male-female difference in the mean of the r parameter is 0.033 (p-value = 0.740) in wave 1 and
0.102 (p-value = 0.316) in wave 2. The male-female difference in the mean of the n parameter is 0.284 (p-
value = 0.220) in wave 1 and 0.420 (p-value = 0.374) in wave 2.

32 Detailed estimation results for the preceding discussion, as well as parallel results under EUT, are
available upon request. 
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5. Conclusions

Heckman and Smith [1995; p.99] noted that, “Surprisingly, little is known about the

empirical importance of randomization bias.” Aggregate data on participation rates from job training

experiments by Hotz [1992] and clinical trials by Kramer and Shapiro [1984] suggest that the bias

due to endogenous participation decisions might be significant, but we know of no study that

directly evaluates the hypothesis.33 We do not a priori know the direction of randomization bias in

economics experiments, and whether the use of recruitment fees may mitigate the effects of

randomization bias on elicited risk attitudes.

Our results suggest that randomization bias can have significant effects on inferences about

risk attitudes. Neglecting endogenous sample selection and attrition may lead one to draw erroneous

conclusions about risk attitudes at a point in time (e.g. the average Dane’s relative risk aversion

now), as well as stability in risk attitudes over time (e.g. whether the average Dane’s relative risk

aversion has changed over time). These conclusions hold whether one uses an EUT or RDU

characterization of risk attitudes, although the way in which sample selection and attrition affects the

analysis is different across the two decision theories as well as alternative measures of temporal

stability that one may consider.

These effects of randomization bias on risk attitudes are clear in our design because of the

exogenous variation in recruitment fees. We do not claim that our findings generalize beyond the

adult Danish population, the specific recruitment fees we employed, or the battery of lotteries we

employed. On the other hand, our sample is wide and representative of the adult Danish population,

and our recruitment fees and lottery parameters fall well within common practice in field

33 Many other hypotheses about the effects of sample selection and attrition in longitudinal studies
have been evaluated, of course. In the case of clinical trials, for instance, Beunckens, Molenberghs and
Kenward [2005] compare the effects of obvious ad hoc methods (such as assuming that the last observed case
for some subject who does not participate in later sessions is the observation that the subject would have
provided, or only using sub-samples that participate in all sessions), methods based on imputation and
corrections for the imprecision of the imputation, and “direct-likelihood” methods such as those used here.
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experiments. The constructive implication for future experimental design is to exogenously vary

show-up fees and evaluate the effects on a case-by-case basis. 

If the need for corrections to mitigate randomization bias is “bad news” from our results,

the “good news” is that even after making such corrections, there are still many quantitative and

qualitative aspects of risk attitudes that remain temporal stable, at least for this population and the

time frame evaluated in our experiments.
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Table 1: Sample Sizes and Descriptive Statistics

A. Sample Sizes

Recruitment Variable Wave 1 Wave 2 All

High Fixed Fee Invited 865 184 1049
Accepted 208 89 297
Percent Accept 24.1% 48.4% 28.3%

Low Fixed Fee Invited 1131 170 1301
Accepted 205 93 298
Percent Accept 18.1% 54.7% 22.9%

B. Descriptive Statistics for Participants

Variable Definition Mean Wave 1 Mean Wave 2

female Female 0.48 0.45
young Aged less than 30 0.16 0.13
middle Aged between 40 and 50 0.23 0.21
old Aged over 50 0.49 0.53
IncLow Lower level income 0.22 0.23
IncHigh Higher level income 0.47 0.45

Number of subjects 413 182

Notes: Most variables have self-evident definitions. The omitted age group is 30-39. Lower income is defined in variable
“IncLow” by a household income in 2008 below 300,000 kroner. Higher incomes are defined in variable “IncHigh” by a
household income of 500,000 kroner or more. 
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Table 2: Estimates of EUT Parameters 
with Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -10806 for 25,555 observations on 413 subjects and 1,583 rejecters in
wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.096 0.062 0.119 -0.218  0.025
young  0.212 0.117 0.069 -0.017  0.441
middle  0.239 0.107 0.026  0.028  0.449
old  0.272 0.097 0.005  0.082  0.461
high_fee  0.186 0.066 0.004  0.058  0.315
constant -1.054 0.098 0.000 -1.247 -0.862

Attrition equation: â2/%Var(un2)

female -0.081 0.105 0.437 -0.286  0.124
young -0.364 0.201 0.071 -0.758  0.031
middle -0.092 0.172 0.595 -0.429  0.246
old  0.005 0.152 0.975 -0.294  0.303
IncLow -0.146 0.133 0.274 -0.406  0.115
IncHigh -0.238 0.115 0.038 -0.464 -0.013
earnings  0.011 0.029 0.694 -0.045  0.068
constant  0.979 0.182 0.000  0.623  1.336

Mean of r parameter in wave 1

RAfirst  0.097 0.083 0.245 -0.066  0.260
RAhigh  0.066 0.025 0.008  0.017  0.115
constant  0.378 0.074 0.000  0.233  0.524

Mean of r parameter in wave 2

RAfirst  0.034 0.059 0.563 -0.082  0.150
RAhigh  0.043 0.036 0.234 -0.028  0.113
constant  0.678 0.088 0.000  0.506  0.850
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.726 0.058 0.000  0.612  0.840
ór2  0.705 0.065 0.000  0.578  0.832
ñr1r2  0.410 0.115 0.000  0.185  0.636

Other correlation coefficients

ñs1s2 -0.533 0.079 0.000 -0.688 -0.379

ñs1r1  0.062 0.062 0.319 -0.060  0.183
ñs1r2 -0.500 0.050 0.000 -0.598 -0.402

ñs2r1 -0.120 0.075 0.109 -0.267  0.027
ñs2r2  0.748 0.057 0.000  0.635  0.860

Test for temporal stability of predicted group means for r parameter

ªBase   0.300 0.125 0.017  0.054  0.545
ªRAhigh  0.276 0.123 0.024  0.036  0.517
ªRAfirst  0.237 0.153 0.122 -0.063  0.537

Notes: Group means are predicted using the estimated mean function for r parameter. ªBase tests whether the between-
wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in constant +

RAhigh (RAfirst) is significant.     
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Table 3: Estimates of the RDU Parameters
with Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -9724 for for 25,555 observations on 413 subjects and 1,583 rejecters in
wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.059 0.061 0.332 -0.180  0.061
young  0.164 0.109 0.133 -0.050  0.379
middle  0.268 0.102 0.008  0.069  0.468
old  0.329 0.092 0.000  0.150  0.509
high_fee  0.192 0.061 0.002  0.073  0.313
constant -1.072 0.091 0.000 -1.251 -0.894

Attrition equation: â2/%Var(un2)

female -0.113 0.128 0.380 -0.364  0.139
young -0.321 0.257 0.211 -0.825  0.183
middle -0.206 0.237 0.386 -0.671  0.259
old -0.068 0.206 0.742 -0.472  0.337
IncLow -0.256 0.183 0.160 -0.615  0.102
IncHigh -0.165 0.157 0.295 -0.473  0.144
earnings  0.027 0.043 0.533 -0.057  0.111
constant  0.682 0.251 0.007  0.190  1.174

Mean of r parameter in wave 1

RAfirst  0.092 0.082 0.263 -0.069  0.253
RAhigh  0.056 0.034 0.097 -0.010  0.122
constant  0.356 0.074 0.000  0.212  0.501

Mean of r parameter in wave 2

RAfirst -0.164 0.072 0.023 -0.305 -0.023
RAhigh  0.023 0.048 0.635 -0.072  0.118
constant  0.548 0.077 0.000  0.397  0.700
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.612 0.062 0.000  0.491  0.733
ór2  0.491 0.044 0.000  0.405  0.576
ñr1r2  0.437 0.076 0.000  0.289  0.585

Mean of ö parameter in wave 1

RAfirst -0.015 0.121 0.903 -0.251  0.222
RAhigh  0.061 0.061 0.316 -0.059  0.181
constant  1.057 0.153 0.000  0.757  1.357

Mean of ö parameter in wave 2

RAfirst  0.254 0.191 0.183 -0.120  0.628
RAhigh  0.008 0.097 0.983 -0.183  0.198
constant  1.247 0.206 0.000  0.842  1.651

Standard deviations and correlation coefficient of ö parameters in wave 1 and wave 2

óö1  2.118 0.480 0.000  1.177  3.060
óö2  4.428 1.536 0.004  1.417  7.439
ñn1n2  0.852 0.055 0.000  0.744  0.959

Other correlation coefficients

ñs1s2 -0.236 0.089 0.008 -0.411 -0.062

ñs1r1  0.184 0.079 0.021  0.028  0.339
ñs1r2  0.200 0.090 0.025  0.025  0.376

ñs1n1  0.384 0.030 0.000  0.326  0.443
ñs1n2  0.306 0.045 0.000  0.219  0.394

ñs2r1 -0.346 0.051 0.000 -0.446 -0.247
ñs2r2  0.096 0.085 0.258 -0.071  0.264

ñs2n1 -0.245 0.076 0.001 -0.394 -0.097
ñs2n2 -0.153 0.067 0.022 -0.284 -0.023

ñr1n1  0.086 0.043 0.044  0.002  0.170
ñr1n2  0.075 0.056 0.183 -0.035  0.185

ñr2n1  0.269 0.044 0.000  0.182  0.356
ñr2n2  0.178 0.044 0.000  0.092  0.264
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Test for temporal stability of predicted group means for r parameter

ªBase   0.192 0.118 0.105 -0.040  0.424
ªRAhigh  0.159 0.102 0.120 -0.041  0.359
ªRAfirst -0.064 0.124 0.608 -0.308  0.180

Test for temporal stability of predicted group means for ö parameter

ªBase  0.190 0.207 0.359 -0.215  0.595
ªRAhigh  0.136 0.193 0.481 -0.242  0.514
ªRAfirst  0.458 0.196 0.019  0.074  0.843

Notes: Group means are predicted using the estimated mean function for each parameter. ªBase tests whether the
between-wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in

constant + RAhigh (RAfirst) is significant.     
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Appendix A: Instructions (WORKING PAPER)

We document the instructions for the risk aversion task that were given in hard copy to the
subjects and a typical screen shot of the decision task. The original Danish version of the manuscript
is available on request. The instructions were in 14-point font, printed on A4 paper, and handed out
in laminated form.

Task L

In this task you will make a number of choices between two options labeled “A” and “B”.
An example of your task is shown on the right. You will make all decisions on a computer.

All decisions have the same format. In the example on the right Option A pays 60 kroner if
the outcome of a roll of a ten-sided die is 1, and it pays 40 kroner if the outcome is 2-10. Option B
pays 90 kroner if the outcome of the roll of the die is 1 and 10 kroner if the outcome is 2-10. All
payments in this task are made today at the end of the experiment.

We will present you with 40 such decisions. The only difference between them is that the
probabilities and amounts in Option A and B will differ.

You have a 1-in-10 chance of being paid for one of these decisions. The selection is made
with a 10-sided die. If the roll of the die gives the number 1 you will be paid for one of the 40
decisions, but if the roll gives any other number you will not be paid. If you are paid for one of these
40 decisions, then we will further select one of these decisions by rolling a 4-sided and a 10-sided
die. A third die roll with a 10-sided die determines the payment for your choice of Option A or B.
When you make your choices you will not know which decision is selected for payment. You should
therefore treat each decision as if it might actually count for payment.

If you are being paid for one of the decisions, we will pay you according to your choice in
the selected decision. You will then receive the money at the end of the experiment. 

Before making your choices you will have a chance to practice so that you better understand
the consequences of your choices. Please proceed on the computer to the practice task. You will be
paid in caramels for this practice task. 

-49-



Typical screen shot
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Appendix B: Additional Estimations (WORKING PAPER)

Table B1: Estimates of EUT Parameters 
with No Controls for Sample Selection and Attrition

(Log-simulated likelihood = 9556 for for 25,555 observations on 413 subjects in wave 1 and 182
subjects in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Mean of r parameter in wave 1

RAfirst -0.014 0.066 0.829 -0.143  0.115
RAhigh  0.066 0.025 0.009  0.017  0.115
constant  0.537 0.058 0.000  0.424  0.650

Mean of r parameter in wave 2

RAfirst -0.101 0.128 0.428 -0.352  0.149
RAhigh  0.047 0.035 0.185 -0.022  0.116
constant  0.660 0.152 0.000  0.362  0.957

Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.698 0.056 0.000  0.587  0.808
ór2  0.549 0.049 0.000  0.453  0.646
ñr1r2  0.575 0.079 0.000  0.419  0.730

Test for stability of predicted group means for r parameter

ÎBase   0.128 0.126 0.331 -0.125  0.370
ªRAhigh  0.104 0.123 0.396 -0.136  0.345
ªRAfirst  0.036 0.058 0.542 -0.079  0.150

Notes: Group means are predicted using the estimated mean function for r parameter. ªBase tests whether the between-
wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in constant +
RAhigh (constant + RAfirst) is significant.     
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Table B2: Estimates of the RDU Parameters
with No Controls for Sample Selection and Attrition

(Log-simulated likelihood = 8487 for for 25,555 observations on 413 subjects in wave 1 and 182
subjects in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Mean of r parameter in wave 1

RAfirst  0.140 0.163 0.391 -0.180  0.459
RAhigh  0.053 0.035 0.135 -0.017  0.122
constant  0.484 0.152 0.001  0.186  0.783

Mean of r parameter in wave 2

RAfirst -0.006 0.116 0.957 -0.233  0.221
RAhigh  0.028 0.045 0.536 -0.060  0.116
constant  0.656 0.094 0.000  0.472  0.840

Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.642 0.067 0.000  0.510  0.775
ór2  0.553 0.058 0.000  0.439  0.667
ñr1r2  0.546 0.045 0.000  0.458  0.635

Mean of ö parameter in wave 1

RAfirst  0.408 0.360 0.257 -0.298  1.114
RAhigh  0.083 0.104 0.424 -0.121  0.288
constant  1.639 0.268 0.000  1.114  2.165

Mean of ö parameter in wave 2

RAfirst  0.614 0.654 0.348 -0.668  1.896
RAhigh  0.029 0.174 0.865 -0.312  0.371
constant  2.438 0.477 0.000  1.502  3.374

Standard deviations and correlation coefficient of ö parameters in wave 1 and wave 2

ón1  3.338 0.578 0.000  2.205  4.471
ón2  8.254 2.983 0.006  2.409             14.100
ñn1n2   0.591 0.050 0.000  0.493  0.689
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Other correlation coefficients

ñr1n1  0.271 0.034 0.000  0.205  0.338
ñr1n2  0.128 0.030 0.000  0.070  0.187

ñr2n1  0.277 0.038 0.000  0.203  0.351
ñr2n2  0.224 0.035 0.000  0.155  0.292

Test for stability of predicted group means for r parameter

ÎBase   0.172 0.107 0.109 -0.038  0.381
ÎRAhigh  0.146 0.093 0.115 -0.035  0.328
ÎRAfirst  0.026 0.075 0.731 -0.121  0.172

Test for stability of predicted group means for ö parameter

ÎBase   0.799 0.442 0.071 -0.067  1.664
ÎRAhigh  0.745 0.448 0.097 -0.134  1.624
ÎRAfirst  1.004 0.559 0.072 -0.092  2.100

Notes: Group means are predicted using the estimated mean function for each parameter. ªBase tests whether the
between-wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in
constant + RAhigh (constant + RAfirst) is significant.     
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