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Abstract

A recent literature on sovereign debt sustainability (see Trabandt
and Uhlig (2011) and Mendoza et al. (2014)) has produced Laffer curve
calculations for Eurozone countries. These calculations have been car-
ried out mainly in a quasi-static fashion by considering policy experi-
ments where individual tax rates are permanently set at a new value
while keeping all others constant. However, such fiscal policy design
disregards complementarities among tax instruments as well as the po-
tential for altering tax rates during the transition to the steady-state
in a manner which exploits expectations. Our paper addresses this
issue by considering policy experiments where fiscal policy is set op-
timally and fiscal instruments are jointly varied along the transition
to steady-state. Through the Ramsey problem we map the maximum
amount of tax revenues a government can further raise to the welfare
costs of the associated tax distortions. We label this relation as the
‘optimal Laffer curve’. We show that tax revenue and welfare gains
relative to the policy experiments examined by the previous literature
are dramatic.
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1 Introduction

Since Jude Wannisky’s article in the 1970s, the Laffer curve has been the ob-
ject of intense debate and the theoretical reference for a series of tax reforms.
Much of this popularity is due to its simple interpretation and powerful impli-
cations. It implies that taxes and fiscal revenues are related by an inverted-U
relationship. Progressive tax hikes are increasingly distortionary and eventu-
ally reduce tax revenues. In particular, the closer an economy is to the peak
of the Laffer curve, the more self-defeating a tax hike will be and the lower
the fiscal space for reducing any deficit.

More recently, the increase in debt-to-GDP ratios in a number of economies,
particularly following the financial crisis and the associated increased risk of
sovereign default, has triggered renewed interest in the Laffer curve as a
means of assessing the sustainability of government finances. A large num-
ber of papers have investigated Laffer curves using a variety of economic
models.1 They seek to answer questions, such as: at which point on the
Laffer curve is a particular country? To what extent might a tax increase be
self-defeating, or a tax cut self-financing? And what is the sustainable level
of government debt?

Despite this intense research effort, Laffer curve calculations have tended
to be relatively mechanical. Typically, the conventional Laffer curve calcula-
tion for an individual tax is constructed by progressively varying its rate from
0% to 100%, while keeping all other fiscal instruments fixed. Moreover, a one-
off permanent change in a single tax rate is often assumed in constructing
the Laffer curve. However, these conventional approaches ignore two crucial
issues. First, there is likely to be some degree of complementarity between
fiscal instruments, such that appropriately designing the tax mix will gener-
ate more revenue than an instrument-by-instrument approach. Second, in a
dynamic economy, the profile of fiscal instruments over time is likely to be
important in assessing the discounted revenues generated. This is due to the
fact that the tax elasticity of production factors varies over time, and tax

1Those studies include Bruce and Turnovsky (1999), Agell and Persson (2001), Novales
and Ruiz (2002),Mankiw and Weinzierl (2006), Leeper and Yang (2008), Trabandt and
Uhlig (2011) and Mendoza et al. (2014).
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revenues raised in the distant future matter less in present value terms.
Our paper attempts to address these issues by allowing fiscal policy to

be conducted optimally. Therefore, the policy maker can vary both the level
and the composition of fiscal instruments over time to achieve the maxi-
mum attainable tax revenues for a given welfare loss due to tax distortions.
We then compare tax revenues under optimal policy with those implied by
the conventional Laffer curve calculations considered by Trabandt and Uhlig
(2011) and Mendoza et al. (2014). We show that the increase in tax revenues
raised per unit of welfare loss is dramatic when the policy maker can vary
multiple tax instruments over time. This result holds even when we allow
for debt service costs to rise with debt levels and policy maker myopia. Our
study implies that the previous literature significantly underestimates the
sustainable level of government debt, or equivalently, overstates the welfare
losses of achieving a given level of fiscal revenues.

Locating Our Contribution within the Related Literature

The European sovereign debt crisis of 2009-2011 has generated widespread
interest in measuring the sustainability of government debt. In the new
Handbook of Macroeconomics, D’Erasmo et al. (2015) identifies three main
approaches to assessing fiscal sustainability. The first is empirical based
on the estimation of fiscal reaction functions in the spirit of Bohn (2005).
The latter two rely on calibrated theoretical models which either look at the
government’s optimal default decision (see Mendoza (2013) and Dovis et al.
(2014)) or the fiscal limit (Mendoza et al. (2014) and Trabandt and Uhlig
(2011)). The former approach asks what debt the government is prepared to
support optimally, while the latter what debt it could potentially support.
Whether or not the revenues implied by this final exercise can actually be
attained then depends upon the credibility of the government’s policies.

Our research builds on this latter literature which seeks to compute the
fiscal limit, which is underpinned by the Laffer curve. The peak of the Laf-
fer curve defines the maximum tax revenues which can be generated given
the fiscal experiment considered. It serves as a measure of potential fiscal
sustainability. The literature in this field has carried out fiscal limit calcula-
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tions for groups of countries by constructing Laffer curves for appropriately
calibrated model economies.

Trabandt and Uhlig (2011) have provided Laffer curve calculations by
considering the steady-state economies calibrated to represent key European
countries.2 Their exercise is regarded as the conventional Laffer curve calcu-
lation where a curve for each tax instrument is constructed by letting its rate
vary from 0% to 100%, while holding all the remaining fiscal instruments
fixed. Similarly, Mendoza et al. (2014) have undertaken these calculations in
the context of dynamic open economies to account for transitional dynamics
and international spillovers. However, they also assume a one-off permanent
change in a single tax rate as in Trabandt and Uhlig (2011). As a result,
these calculations suggest that failing to account for transitional dynamics
does not materially affect the construction of the Laffer curve.3

Our paper seeks to reconcile these conventional Laffer curve calculations
with optimal policy results. In doing so, we produce an object we label the
‘optimal Laffer curve’, which plots a Laffer curve in welfare loss-sustainable
debt space. Differently from the existing literature, we let the fiscal pol-
icy underpinning the Laffer curve be determined through an optimal policy
problem. We employ the workhorse Neoclassical model allowing for variable
capacity utilization of capital as in Mendoza et al. (2014).4 In this environ-
ment, we study the maximum amount of tax revenues a government can raise
for a given level of social welfare when policy is set optimally. In doing so,

2Trabandt and Uhlig (2011) also conduct a robustness check on the significance of al-
lowing for transitional dynamics. In the case of a labor income tax, transitional dynamics,
following a permanent shift in the tax rate, make little difference. While the case of capital
income tax is complicated by the fact the policy maker can exploit the initial holdings of
capital in a non-distortionary way.

3Bi (2012) adopts a different approach to computing the fiscal limit which is closer
in spirit to what we do. She considers a simple stochastic economy without capital and
can analytically compute the peak of the Laffer curve in every period conditional on
the realization of a technology shock. These conditional maximum revenues can then be
combined to generate a distribution of the fiscal limit. Our model is richer, containing both
capital and multiple fiscal instruments such that computing the Laffer curve is non-trivial.

4As shown in Mendoza et al. (2014) and Ferraro (2010), variable capacity utilization
overturns the ability of the policy maker to tax initial holdings of capital in a lump-sum
way. Effectively, the holders of capital choose to decrease their rate of utilization rather
than allow the policy maker to tax them. The policymaker is, therefore, less able to exploit
a predetermined tax base.

3



we extend the existing literature in a number of ways.
First, our approach takes full account of the dynamic path towards the

eventual steady-state and allows tax rates to vary over time. We find that
exploiting these transitional dynamics can often account for much of the tax
revenue raising capability of the government under optimal policy. We show
that both the steady-state or dynamic analyses with constant tax rates which
underpin conventional Laffer curve calculations significantly understate the
potential fiscal limit as a result.

Second, we allow tax instruments to be varied simultaneously rather than,
as in the conventional Laffer curve calculations, sequentially varying one in-
strument while holding all others fixed. The ability to vary multiple tax rates
over time allows the policy maker to generate significantly higher revenues by
committing to gradually eliminate capital income taxation in the long run,
while, at the same time, slowly switching to labor income taxation.

Third, our optimal Laffer curve, plotted in welfare loss-sustainable debt
space, combines the various tax distortions in a single welfare measure. We
can map existing measures of the Laffer curve into the same space as our
optimal Laffer curve and in doing so we can highlight how policy recommen-
dations change both in steady-state and transition. Our findings suggest that
these policy recommendations will be radically different.

Finally, we consider a number of extensions to our baseline model which
include risk premia on government debt and policy maker myopia. Those
extensions impact on the trade-offs which are so finely balanced in the bench-
mark optimal policy exercise.5 Specifically, risk premia on government debt
gives rise to incentives to stabilize debt quickly, while policy maker myopia
captures the opposite tendency to delay fiscal adjustment. We show that the
potential gains in terms of welfare and/or debt sustainability achieved when
implementing fiscal policy optimally are robust to such extensions.

5Optimal policy in our baseline model will inherit one of the key features of tax smooth-
ing whereby the policies sustaining steady-state debt will ensure that the discounted long-
run benefits of reducing debt exactly match the short-run costs of doing so. This further
implies that where this balancing point is found will define the steady-state level of debt
which, in turn, depends on the initial debt level.
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The remainder of the paper is structured as follows. Section 2 presents the
main features of our model economy, while in Section 3 we describe the Ram-
sey problem solved by the government. Section 4 discusses the calibration
strategy and introduces the optimal Laffer curve. In Section 5 we contrast
our optimal Laffer curve with conventional analyses which examine one-off
permanent changes in a single tax instrument. Robustness and extensions
which include risk premia on debt and policy maker myopia are considered
in Section 6. Section 7 concludes.

2 The Model Economy

Our baseline model follows the closed economy of Mendoza et al. (2014).
The model economy features exogenous growth, at rate γ, which is driven
by labor-augmenting technological change. Accordingly, all variables (ex-
cept labor, leisure and the interest rate) are rendered stationary by dividing
them by the level of technology.6 This stationarity-inducing transforma-
tion of the model requires discounting the re-scaled utility flows at the rate
β̃ = β (1 + γ)1−σ where β is the standard subjective discount factor of time-
separable preferences, and adjusting the laws of motion of physical and fi-
nancial assets so that date t + 1 stocks grow by the balanced-growth factor
1 + γ.

2.1 Households

The utility function of the representative household in our economy is

∞∑
t=0

β̃tU (ct, 1− lt) , (1)

where we assume the period utility function is a standard CRRA function in
terms of a CES composite good made of consumption, ct, and leisure, 1− lt

6We could have presented the model in its non-stationary form and then undertaken the
transformation of the equilibrium conditions at the end. This is equivalent to undertaking
the scaling by technology when setting up the model, as we do.
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as follows:

U(ct, 1− lt) =
[ct(1− lt)a]1−σ

1− σ
, σ > 1, and, a > 0.

The household’s budget constraint is given by,

(1+τ ct )ct+xt+(1+γ)qtdt+1 = (1−τ lt )wtlt+(1−τ kt )rtmtkt+θτ
k
t δkt+dt+et, (2)

where τ ct , τ lt and τ kt are proportional tax rates on consumption, ct, labor
income, wtlt, and capital income, rtmtkt, respectively. θτ kt δ is a capital tax
depreciation allowance which is based on average rates of depreciation and
only applies to a fraction of the capital stock since θ < 1. Households also
receive a lump-sum transfer from the government, et, which is treated as
being exogenous and sets to its steady-state value (et = ē). Finally, the
household saves in the form of physical capital, kt+1, as well as government
bonds, dt+1, which are priced at qt.

Gross investment, xt, is defined as,

xt = (1 + γ)kt+1 − [1− δ(mt)] kt + φ(kt+1, kt,mt), (3)

where the depreciation rate depends on the rate of capital utilization mt as
follows,

δ(mt) =
χ0m

χ1
t

χ1

, χ0 > 0 and χ1 > 1, (4)

and capital adjustment costs are defined as,

φ(kt+1, kt,mt) =
η

2

{
(1 + γ)kt+1 − [1− δ(mt)] kt

kt
− z
}2

kt,

where η determines the speed of adjustment of the capital stock and z is the
long-run investment-capital ratio which removes adjustment costs from the
steady-state.

The household chooses the path of consumption, leisure, government
bonds, investment and the rate of capital utilization to maximize utility
(1) subject to the budget constraint (2) and the law of motion for capital
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(3). Its optimization yields the following set of first order conditions.7 The
consumption Euler equation,

(1 + γ)qt = β̃
U ′ct+1

(ct+1, 1− lt+1)

U ′ct (ct, 1− lt)
1 + τ ct

1 + τ ct+1

, (5)

consumption-leisure margin,

−
U ′lt (ct, 1− lt)
U ′ct (ct, 1− lt)

=
1− τ lt
1 + τ ct

wt, (6)

gross investment,

U ′ct (ct, 1− lt)
(1 + τ ct )

[
1 + γ + φ′kt+1

(kt+1, kt,mt)
]

(7)

= β̃
U ′ct+1

(ct+1, 1− lt+1)

(1 + τ ct+1)

[
1− δ(mt+1)− φ′kt+1

(kt+2, kt+1,mt+1)

+(1− τ kt+1)rt+1mt+1 + θτ kt+1δ

]
,

and, finally, capital utilization condition,

(1− τ kt )rtkt = δ′mt(mt)kt + φ′mt(kt+1, kt,mt). (8)

2.2 Firms

Firms rent labor, lt, and capital services, st, from households at a given wage,
wt, and capital rental rate, rt, to maximize profits,

Πt = yt − wtlt − rtst,

subject to a production function which is assumed to be of the Cobb-Douglas
form,

yt = F (st, lt) = s1−α
t lαt .

The firms’ maximization problem gives rise to standard first order condi-
7We use the notation f ′xt

(.) to denote the partial derivative of function f(.) with respect
to argument xt.
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tions
F ′st(st, lt) = rt, (9)

and
F ′lt(st, lt) = wt, (10)

while linear homogeneity implies yt = wtlt + stkt.

2.3 Public Sector

The government’s budget constraint is given by,

dt − (1 + γ)qtdt+1 = pbt, (11)

where the primary balance, pbt, is defined as,

pbt = τ ct ct + τ ltwtlt + τ kt (rtmt − θδ)kt − (gt + et),

where government consumption, gt, is set to its steady-state value gt = ḡ.

2.4 Market Clearing

Market clearing in the goods market requires:

F (st, lt) = ct + gt + (1 + γ)kt+1 − [1− δ(mt)] kt + φ(kt+1, kt,mt), (12)

while capital market clearing implies that

mtkt = st. (13)

2.5 The Competitive Equilibrium

The equilibrium of our model consists of a sequence of prices {wt, rt, qt}∞t=0,
government policy {τ ct , τ lt , τ kt , dt+1}∞t=0 and allocations {ct, lt, st, xt, mt,

kt+1}∞t=0 such that:
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• {ct, lt, xt,mt, kt+1, dt+1}∞t=0 solves the households’ problem given prices
and government policy;

• {st, lt}∞t=0 solves firms’ problem given prices;

• The government’s budget constraint (11) holds for all t ≥ 0;

• All markets clear as in (12) and (13).

The definition above implies that for any government policy {τ ct , τ lt , τ kt ,
dt+1}∞t=0, satisfying the government budget constraint (11), we have a dif-
ferent competitive equilibrium. In Section 3, we describe the optimal policy
problem that selects the policy corresponding to the government’s desired
equilibrium. However, before considering such a problem, we need to put
some structure on which instruments the government has access to.

The distortionary taxes in our model act on three margins. The first mar-
gin is the intratemporal consumption-leisure decision obtained by combining
the first order conditions (6) and (10),

−
U ′lt (ct, 1− lt)
U ′ct (ct, 1− lt)

=
1− τ lt
1 + τ ct

F ′lt(mtkt, lt). (14)

The second margin is the intertemporal investment decision which is obtained
by combining equations (7) and (9),

U ′ct (ct, 1− lt)
(1 + τ ct )

[
1 + γ + φ′kt+1

(kt+1, kt,mt)
]

(15)

= β̃
U ′ct+1

(ct+1, 1− lt+1)

(1 + τ ct+1)

[
(1− τ kt )F ′st+1

(mt+1kt+1, lt+1)mt+1 + 1− δ(mt+1)

−φ′kt+1
(kt+2, kt+1,mt+1) + θτ kt+1δ

]
.

Finally, combining equations (8) and (9) gives rise to the third margin,
namely, the capital utilization condition,

(1− τ kt )F ′st(mtkt, lt)kt = δ′mt(mt)kt + φ′mt(kt+1, kt,mt). (16)

The labor tax, τ lt , can distort the first margin; the consumption tax, τ ct ,
distorts the first and second, while the capital tax, τ kt , affects the latter two.
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In the case of the intratemporal consumption-leisure and investment deci-
sion, if labor income is subsidized at the same constant rate as the policy
maker taxes consumption (i.e. −τ lt = τ ct = τ), it will eliminate these distor-
tions. Given that those taxes and subsidies are then applied to different tax
bases, this would enable the Ramsey policy maker to generate fiscal revenues
without suffering any distortions.8 It effectively gives them access to a lump-
sum tax and renders the policy problem trivial. Since in the real world a
lump-sum tax is typically not available, we rule out this possibility by fixing
τ ct at a calibrated value consistent with the data, τ ct = τ c.9 Therefore, the
capital and labor tax rates are the only fiscal instruments available to the
Ramsey policy maker. Furthermore, in order to make the analytical solution
of our Ramsey problem more tractable, we remove capital adjustment costs
and capital depreciation allowances by setting η = 0 and θ = 0 as in De-
bortoli and Nunes (2010). We will explore the implications of relaxing these
assumptions in the robustness exercises in Section 6.

3 Ramsey Policy with Endogenous Capacity Uti-

lization

In this section, we characterize the solution of the Ramsey model with
endogenous capacity utilization. Under Ramsey policy, the policy maker
chooses the sequences of labor and capital taxes and the implied path for
debt, {τ lt , τ kt , dt+1}∞t=0, so as to maximize life-time utility. This problem is
time inconsistent and we assume that government has access to a commit-
ment technology.

We seek to make three main points which underpin the construction of
our optimal Laffer curve in Section 4. First, the famous Chamley-Judd result
(see Chamley (1986) and Judd (1985)) applies to our model. In the short-run
the capital tax rate is positive as the Ramsey planner exploits the (quasi)
lump-sum nature of the tax on the initial capital. However, in the long-run

8Under such a tax policy the policy could also optimally set the capital tax rate to
zero, τkt = 0.

9This is because, typically, τ c 6= τ .
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the capital tax approaches zero as the Ramsey planner attempts to raise
revenues through the least distortative instrument which is the labor income
tax. Second, with endogenous capacity utilization the tax on the initial stock
of capital is bounded. In our model the presence of endogenous capacity
utilization makes the capital base elastic in the short-run, limiting the extent
to which the Ramsey planner can exploit this margin. This is in contrast to
Chamley-Judd where capacity utilization is fixed. Third, the Ramsey policy
features a unit root in steady-state debt. The steady-state level of debt the
economy eventually achieves depends upon the initial level of debt the policy
maker inherits.

To illustrate those three points, we follow Lucas and Stokey (1983) in
writing the Ramsey policy problem in the primal form that solves for alloca-
tions only. Once allocations have been determined, prices and policy can be
recovered from the competitive economy’s equilibrium conditions.

3.1 The Primal Form

Our Ramsey problem in primal form consists of maximizing utility in (1)
subject to four constraints. The first is the resource constraint implied by
the market clearing conditions in the goods (12) and capital (13) markets,
respectively,

F (mtkt, lt)− ct − gt − (1 + γ)kt+1 + [1− δ(mt)] kt ≥ 0. (17)

The second constraint is the implementability constraint10

B −
∞∑
t=0

β̃t
[
U ′ct (ct, 1− lt)

(
ct −

e

1 + τ c

)
+ U ′lt (ct, 1− lt) lt

]
≥ 0, (18)

where B collects all period-0 terms such that

B ≡ {d0 +
[(

1− τ k0
)
F ′s0(m0k0, l0)m0 + (1− δ (m0))

]
k0}

U ′c0 (c0, 1− l0)

1 + τ c
.

10The derivation of the implementability constraint is shown in Appendix B.1.
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The resource and the implementability constraints are standard in the
optimal policy literature, while the third constraint is due to the presence of
endogenous capacity utilization. It is obtained by combining the intertem-
poral investment decision (15) and capital utilization condition (16) after
leading the latter forward one period 11,

U ′ct (ct, 1− lt)
U ′ct+1

(ct+1, 1− lt+1)
=

β̃

1 + γ

[
δ
′

mt+1
(mt+1)mt+1 + 1− δ(mt+1)

]
. (19)

However, by leading the capital utilization condition (16) one-period forward,
we omitted this condition at period-0 in the third constraint.

Therefore, we need to reintroduce the period-0 capital utilization condi-
tion,

(
1− τ k0

)
F ′s0(m0k0, l0) = δ′m0

(m0) , (20)

as a fourth constraint.
It is convenient to group all terms in the primal policy problem involving

the utility function together as,

V (ct, 1− lt, φ, λ1
t ) = U (ct, 1− lt)

+φ

[
U ′ct (ct, 1− lt)

(
ct −

e

1 + τ c

)
+ U ′lt (ct, 1− lt) lt

]
+λ1

t

[(
1 + γ

β̃

)
U ′ct (ct, 1− lt)

U ′ct+1
(ct+1, 1− lt+1)

]
,

where φ and λ1
t are multipliers associated with the second constraint (18) and

the third constraint (19), respectively. This expression can then be treated
as the policy objective in a more compact representation of the Lagrangian
describing the underlying policy problem, as follows,12

11As discussed above, we temporarily remove capital adjustment costs and capital depre-
ciation allowances to make the analytical solution of our Ramsey problem more tractable.

12The details of the Lagrangian function are shown in Appendix B.2.
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max
{ct,lt,mt,kt+1,τk0 }∞t=0

E0

∞∑
t=0

β̃t


V (ct, 1− lt, φ, λ1

t )

−λ1
t

[
δ
′
mt+1

(mt+1)mt+1 + 1− δ(mt+1)
]

+λ2
t [F (mtkt, lt)− ct − g − (1 + γ)kt+1 + (1− δ(mt)) kt]

−φA,
where λ2

t is the multiplier attached to the resource constraint (17) and

A ≡ B − ϕ

φ

[(
1− τ k0

)
F ′s0(m0k0, l0)− δ′m0

(m0)
]
.

Here, the term A captures all the period-0 constraints including B in the im-
plementability constraint (18) and the period-0 capital utilization condition
(20), where ϕ is the multiplier attached to this condition.

The first order conditions for t ≥ 0 are:

{ct} : V ′ct(ct−1, 1− lt−1, φ, λ
1
t−1) + β̃V ′ct(ct, 1− lt, φ, λ

1
t ) = β̃λ2

t , (21)

{lt} : V ′lt(ct−1, 1− lt−1, φ, λ
1
t−1) + β̃V ′lt(ct, 1− lt, φ, λ

1
t ) = −β̃λ2

tF
′
lt(mtkt, lt),

(22)
{mt} : λ1

t−1δ
′′

mt(mt)mt = β̃λ2
t

[
F ′mt(mtkt, lt)− δ′mt(mt)

]
kt, (23)

{kt+1} : β̃λ2
t+1

[
F ′kt+1

(mt+1kt+1, lt+1)mt+1 + 1− δ(mt+1)
]

= λ2
t (1 + γ), (24)

{c0} : V ′c0(c0, 1− l0, φ, λ1
0) = λ2

0 + φA′c0 , (25)

{l0} : V ′l0(c0, 1− l0, φ, λ1
0) = −λ2

0F
′
l0

(m0k0, l0) + φA′l0 , (26)

{m0} : λ1
0δ
′′

m0
(m0)m0 = λ2

0

[
F
′

m0
(m0k0, l0)− δ′m0

(m0)
]
k0 + φA′m0

, (27)

{
τ k0
}

: φ
U ′c (c0, 1− l0)

1 + τ c
F ′k0(m0k0, l0)m0k0 − ϕF ′k0(m0k0, l0) = 0. (28)

The above set of first order conditions (21)-(28) and the four constraints
characterize the solution of the Ramsey problem.
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3.2 Long-run capital tax of zero

The famous long-run zero-capital tax applies to our model with endogenous
capacity utilization. To illustrate this point, we compare the steady-state
solution of the Ramsey first order condition for capital (24),

β̃ [F ′k(mk, l)m+ 1− δ(m)] = 1 + γ, (29)

to the intertemporal investment decision (15) implied by the competitive
equilibrium13

β̃
[
(1− τ k)F ′k(mk, l)m+ 1− δ(m)

]
= 1 + γ. (30)

Since the Ramsey allocation is a competitive equilibrium, equations (29) and
(30) imply that the Ramsey capital tax, τ k, is zero in the long-run.

3.3 Taxation of initial capital

In our model with endogenous capacity utilization, the first order condition
with respect to the period-0 capital tax, τ k0 , in (28),

φ
U ′c (c0, 1− l0)

1 + τ c
F ′k0(m0k0, l0)m0k0 − ϕF ′k0(m0k0, l0) = 0,

offers an insight of why the initial capital tax is bounded. In particular,
the term, ϕF ′k0(m0k0, l0), appears in the above first order condition because
endogenous capital utilization introduces a distortionary component to the
period-0 capital tax. The multiplier, ϕ, measures the costs of adjusting
capacity utilization, while φ represents the benefits associated with lower fu-
ture distortions implicit in the present value of the budget constraint. As the
government increases the capital tax, households will reduce capacity utiliza-
tion. Therefore, when setting initial capital taxation, the Ramsey planner
will need to balance the benefits associated with lower future distortions with

13With η = θ = 0, the terms associated with capital adjustment costs, φ′kt+1
(kt+1, kt,mt)

and φ′kt+1
(kt+2, kt+1,mt+1), and capital depreciation allowances, θτkt δ, disappear in equa-

tion (15). Therefore, the steady-states of those terms also disappear in equation (30).
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the counteracting short-run costs associated with reduced capacity utiliza-
tion.

This is in contrast to the corresponding condition in Chamley-Judd with
an exogenous fixed utilization rate,

φ
U ′c0 (c0, 1− l0)

1 + τ c
F ′k0 (k0, l0) k0 > 0,

where the period-0 stock of capital, k0, is given and the capital tax rate is
effectively a lump sum tax. Therefore, under Chamley-Judd without endoge-
nous capital utilization, it is optimal to set the capital tax rate as high as
needed to drive φ to zero.

3.4 The unit root in steady-state debt

While the steady-state rate of capital tax has been shown to be zero, the
long-run value of the labor tax depends on the initial level of debt, d0. This
can be seen from the fact that the Lagrange multiplier of the implementabil-
ity constraint, φ, enters the first order condition with respect to labor supply
in (22) which pins down the labor tax rate. Since the value of this Lagrange
multiplier captures the burden of initial debt, this links the Ramsey initial
conditions to the steady-state rate of labor taxation. Therefore, a higher ini-
tial level of debt will result in a higher long-run labor tax to support a higher
long-run debt level, ceteris paribus. Intuitively, our model features a form
of tax smoothing which seeks to balance tax distortions over time, while at
the same time satisfying the government’s intertemporal budget constraint.
In steady-state this means that the costs of transitory tax distortions which
could reduce debt are exactly offset by the discounted value of the gains of
that lower debt, such that the policy maker prefers to maintain debt at that
higher level rather than act to return debt to a unique steady-state value.

Moreover, from the logic of the original Laffer curve, there are two steady-
states associated with any initial debt level: one with a high and the other
with a low value of the labor tax. Therefore, for a given initial level of
government debt, there will be two potential steady-states which satisfy the
Ramsey first order conditions. We can trace out the set of sustainable debt
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levels by varying the initial level of debt and assessing the two possible policy
paths which both sustain that debt. Computing the welfare costs of each
policy path then gives us two points on either side of our optimal Laffer
curve which we will show in Section 4.

4 Optimal Laffer Curve

4.1 Calibration

Before constructing our optimal Laffer curve, we need to calibrate our base-
line model presented in Section 2. Our model is calibrated at a quarterly
frequency on the 15 largest countries in the Eurozone14. In general, our
parametrization tracks closely Mendoza et al. (2014) and D’Erasmo et al.
(2015), not only because we employ the same model for analyzing the fiscal
position of the same group of countries, but also to keep our results directly
comparable with theirs. Our calibration is reported in Table 1.

Beginning with technology parameters, the labor share of production is
set to 0.61, a value in line with Trabandt and Uhlig (2011) and Mendoza
et al. (2014). The quarterly rate of labor augmenting technological change,
γ, is set to 0.0022. This reflects a 0.9% annual average growth rate in real
GDP per capita observed in Eurozone between 2000 and 2011. The depre-
ciation function in (4) requires setting two parameters, χ0 and χ1. First, to
calibrate χ0, we use the steady-state of the capital utilization constraint (19)
which implies that χ0m

χ1 =
(

1 + γ − β̃
)
/β̃ + δ(m), and we normalize the

long-run capacity utilization rate to m = 1. In order to match the long-run
depreciation rate δ(m) = 0.0164, a value in line with Mendoza et al. (2014)
and D’Erasmo et al. (2015), χ0 is set to 0.0266. Second, given the values of
m, δ(m) and χ0, χ1 = 1.628 which is derived from the depreciation function
(4) in steady-state.

For preference parameters, σ is set to 2 to deliver the commonly used
14Specifically, those countries include Austria, Belgium, Estonia, Finland, France, Ger-

many, Luxembourg, the Netherlands, the Slovak Republic, Slovenia, Italy, Spain, Portugal,
Greece and Ireland.
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intertemporal elasticity of substitution of 0.5. The leisure utility parameter,
α, is set to 2.675. This returns the average of 18.2 hours per week for a
person aged between 15 to 64 in France, Germany and Italy, reported in
Prescott (2004). The households’ discount factor, β, is set to 0.9942 such
that β̃ = β (1 + γ)1−σ = 0.992. This implies an annual real interest rate of
4.14% as the quarterly gross rate is R ≡ β (1 + γ)σ = 1.0102.

Fiscal variables include tax rates, government expenditures, transfers and
debt. Although in our analysis labor and capital tax rates are solutions of the
optimal policy problem, the initial equilibrium of our model is parametrized
on the basis of the fiscal regime prior to 2008. In particular, tax rates are
set to be consistent with Mendoza et al. (2014), where τ c = 0.16, τ l = 0.35

and τ k = 0.20. Government expenditures is set to be 21% of GDP in line
with the OECD definition ‘general government consumption expenditure as a
percentage of GDP’. In addition, public debt to GDP ratio,d/4y, is calibrated
to 66% to reflect the debt level in those countries at 2008. Finally, government
transfers are determined as the residual of government’s budget constraint
in (11) such that15

e

y
=
Rev

y
− g

y
− d

y

(
1− β̃

)
= 0.152,

where Rev ≡ τ cc+ τ lwl + τ k(rm− θδ)k. In our baseline model we set both
depreciation allowances, θ, and capital adjustment costs, η, to zero. When
performing robustness we calibrate θ = 0.22 and η = 2 as in Mendoza et al.
(2014).

15Note that the consumption Euler equation in steady state implies that β̃ = (1 + γ)q.
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Table 1: Calibration
Parameter Description Value Calibration strategy

Technology
α labor income share 0.61 Mendoza et al. (2014)
γ growth rate 0.0022 GDP p.c. growth EU-15
m capacity utilization 1 steady-state normalization
δ(m) depreciation rate 0.0164 Mendoza et al. (2014)
χ0 δ (m) coefficient 0.0266 set to yield δ(m) = 0.0164
χ1 δ (m) exponent 1.628 set to yield m = 1

Preferences
β̄ discount factor 0.992 Mendoza et al. (2014)
σ risk aversion 2.000 standard RBC value
a labor supply elasticity 2.675 Mendoza et al. (2014)

Fiscal Policy
τ c consumption tax 0.16 Mendoza et al. (2014)
τ l labor tax 0.35 Mendoza et al. (2014)
τ k capital tax 0.20 Mendoza et al. (2014)
d
y

govt debt to GDP 0.66 Mendoza et al. (2014)
g
y

govt consumption to GDP 0.21 OECD
e
y

govt transfer to GDP 0.152 govt budget in SS
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4.2 Constructing the Optimal Laffer Curve

To construct the optimal Laffer curve we employ the Ramsey policy discussed
in Section 3. Compared to the conventional Laffer curve calculations in Tra-
bandt and Uhlig (2011) and Mendoza et al. (2014), the optimal fiscal policy
underneath our Laffer curve allows for variation of multiple tax instruments
over time. Specifically, tax plans are constructed accounting for discounting,
expectations and the dynamics of production factor elasticities.

We construct our optimal Laffer curve by iteratively solving the Ramsey
problem conditional on different amounts of initial government debt. We
then recover welfare costs associated with the optimal policy that sustains
these debt levels.16 These welfare costs capture the combined distortions
implied by the fiscal mix optimally implemented by the Ramsey planner.
We then plot each level of government debt (over GDP) against the implied
welfare loss measured in consumption equivalent units.17 This gives rise to
our optimal Laffer curve in Figure 1. Such a curve represents welfare costs of
sustaining any amount of government debt when fiscal policy is carried out
optimally. It shows the key elements of a policy maker’s problem: how much
debt can be sustained and at what social cost?

The optimal Laffer curve inherits the bell shape of the conventional Laf-
fer Curve: each amount of debt can be repaid in two ways, one of which
is inefficient. This shape results from the properties of the optimal policy
problem featuring exogenous government spending and endogenous distor-
tionary taxation and debt. This problem is known to be non-ergodic as its
steady-state depends on the initial level of government debt (and capital).
However, such a steady state is not unique. In particular, there are two dif-
ferent steady-states satisfying the Ramsey first order conditions. One gives
the positive sloping side of our optimal Laffer curve, while the other one
features an inefficiently high level of tax distortions and welfare loss which is

16The initial government debt corresponds to the present value of tax revenues minus
exogenous public spending. Since government spending is exogenous and fixed, the terms,
such as the initial government debt, the sustainable government debt or discounted stream
of tax revenues, are all equivalent. We can therefore use these terms interchangeably.

17See Appendix D for the computation of consumption equivalent units of welfare.
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on the downward sloping side of the curve.
Finally, from Figure 1 some interesting insights can be appreciated. In

particular, under zero welfare cost, our optimal Laffer curve implies a sus-
tainable debt to GDP ratio of 96% as opposed to 66% supported by the initial
calibrated tax policies in Table 1. That means implementing an optimal tax
policy can generate an additional 33% of GDP in discounted tax revenues
at no welfare cost. In addition, moving along the optimal Laffer curve gives
us a sense of the trade-offs facing a policy maker. The highest sustainable
debt to GDP ratio is about 224%, with the associated tax distortions being
equivalent to a welfare loss of 16.7% of steady-state consumption.
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Figure 1: Optimal Laffer Curve

5 Optimal Laffer Curve versus Conventional Laf-

fer Curve

We now turn to explore how our optimal Laffer curve compares to the conven-
tional Laffer curves of Trabandt and Uhlig (2011) and Mendoza et al. (2014)
to assess to what extent these latter calculations leave potential revenue or
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welfare gains unexploited by failing to conduct policy optimally. As Trabandt
and Uhlig (2011) focus on a steady-state economy, whereas Mendoza et al.
(2014) on a dynamic one, we consider these cases separately. Although in
the conventional Laffer curve calculation, a dynamic analysis does not seem
to be radically different from a steady-state one, we show that transitional
dynamics can be hugely important when policy is conducted optimally. This
is due to the fact that while the economy may be dynamic, the fiscal policies
considered in conventional analyses are both static and rely on only varying
one fiscal instrument at a time. Relaxing these assumptions can generate
significant tax revenues and/or welfare gains.

5.1 Steady-State Laffer Curves

In this subsection, we first compare our optimal Laffer curve with the steady-
state Laffer curve calculation carried out by Trabandt and Uhlig (2011),
‘Trabandt-Uhlig’ henceforth. Trabandt-Uhlig’s calculation is produced by
considering the economy at its steady-state and constructing two curves: the
capital and the labor Laffer curve. Those curves are obtained by fixing all
tax rates but one and observing how fiscal revenues change as the latter is
varied from 0 to 100%. For most of their analysis transitional dynamics are
disregarded, that is, following a policy change with respect to the initial equi-
librium of the decentralized economy, all endogenous variables are analyzed
after reaching their new long-run levels. We compare their Laffer curves and
fiscal policy with a steady-state version of our optimal Laffer curve. We
aim to show that there are significant differences between conventional Laf-
fer curve calculation and the steady-state of our dynamic policy problem.
Specifically, the latter does not generate as much tax revenues as the former
in the long-run. The reasons why the Ramsey policy maker chooses to forgo
revenues in the long-run underpins the gains from adjusting policy during
the transition, which the steady-state approach ignores. We begin to explore
these trade-offs in this subsection, and more fully in subsection 5.2.

We proceed as follows. We use our decentralized economy in its steady-
state to reproduce Trabandt-Uhlig’s labor and capital Laffer curves. A labor
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Laffer curve is constructed by varying the labor tax rate and fixing consump-
tion and capital tax rates at their calibrated values, while a capital Laffer
curve is obtained by varying the capital tax rate while holding constant
the other two tax rates at their calibrated values. We then compare these
curves with a steady-state version of our optimal Laffer curve. The latter is
constructed from the steady-state of our Ramsey model, iteratively solved
by varying the initial level of debt and recovering the welfare cost implied
by the associated steady-state. We plot all three curves in the welfare loss-
sustainable debt space in Figure 2, where welfare costs are measured as losses
of constant consumption equivalent units with respect to the decentralized
economy and the sustainable debt as a percentage of GDP.18
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Figure 2: Comparing steady-state Laffer curves

The tallest and the lowest Laffer curves in Figure 2 are Trabandt-Uhlig’s
labor and capital Laffer curves, respectively, while the intermediate curve
represents the steady-state version of our optimal Laffer curve. The poor
performance of the capital Laffer curve reflects the well known fact that the
capital tax is the most distortive tax: a policy based on increasing capital

18Since the level of GDP varies across policies, for comparability we refer to its level in
the calibrated decentralized economy.
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taxation is therefore condemned to be relatively ineffective. For this reason,
we focus on Trabandt-Uhlig’s labor Laffer curve for most of our comparisons.
Figure 3 presents the fiscal policies underneath Trabandt-Uhlig’s labor Laffer
curve and the steady-state version of our optimal Laffer curve. As discussed
in Section 3, optimal policy in steady-state prescribes a capital tax of zero,
with labor income bearing all the burden of taxation. In contrast, Trabandt-
Uhlig adopt a distortionary capital income tax of τ k = 0.2, which means that
a given welfare loss is associated with a lower labor income tax as shown in
the right panel of Figure 3.
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Figure 3: Comparing implied fiscal policies

The most striking implication of Figure 2 is that much of the Trabandt-
Uhlig labor Laffer curve lies above the steady-state of our optimal Laffer
curve. In other words, the optimizing policy maker is, in steady-state, sus-
taining a lower level of debt at a higher welfare cost. We now turn to explore
why this is. The first point to make is that the optimal Laffer curve seeks
to maximize welfare given the need to sustain a given level of debt in a dy-
namic economy. Therefore, the policy maker may not commit to achieving
a steady-state that generates as much revenues as Trabandt-Uhlig in order
to raise additional revenues during the transition at a lower welfare cost. To
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develop this intuition, we carry out the following analysis. Starting from the
peak of the Trabandt-Uhlig Laffer curve, we move toward the optimal steady-
state associated with such a point, as shown in Figure 4. In other words, we
adopt a set of initial conditions implied by the peak of the Trabandt-Uhlig
labor Laffer curve, and use our Ramsey problem to solve for the transitional
dynamics toward the optimal steady-state these initial conditions imply. We
find that such a steady-state is far from being appealing on the basis of static
considerations. In particularly, the optimal long-run equilibrium is associated
with a large loss of tax revenues. The sustainable debt over GDP drops from
114% to 94% with only limited long-run welfare gains. Nevertheless, when
transitional dynamics are accounted for, moving toward this optimal long-
run steady-state is the right thing to do. As reported in Table 2, the overall
tax revenues raised are such that sustainable debt is same as the peak of
Trabandt-Uhlig Laffer curve, but welfare gains are dramatic, amounting to
around 9.43% in consumption equivalent units.
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Figure 4: Transiting from Trabandt-Uhlig to Ramsey steady state
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Table 2: Transition from Trabandt-Uhlig to optimal steady-state

Capital tax Labour tax Debt/GDP
(1) Trabandt-Uhlig’s peak 20% 49% 114%

(2) Ramsey Laffer correspondent 0% 54% 94%

Transition from (1) to (2) 4% 51% 114%

By transiting from (1) to (2) we sustain same debt but gain 9.43% CE

The above analysis can be applied to any point of Trabandt-Uhlig’s curve
lying above the steady-state of our optimal Laffer curve. This implies that
Trabandt-Uhlig’s long-run policies are superior in terms of tax revenue raised
per unit of welfare loss but only when the policy maker’s ability to exploit
transitional dynamics are disregarded. Trabandt-Uhlig’s policies are domi-
nated by those implied by the Ramsey model, when we include the revenues
generated during the transition to the steady-state. The main implication of
this result is that, if a policy maker was to announce a long-run policy on
the basis of steady-state calculations, she will most likely end up choosing
a highly inefficient one. It follows that focusing on steady-state calculations
alone is likely to be highly misleading. The evaluation of policy changes rad-
ically when the transition is taken into account and the policy maker is able
to exploit that transition.

To appreciate this better, Figure 5 contrasts our optimal Laffer curve
where transitional dynamics are accounted for as previously shown in Figure 1
with its steady-state version. We link three points on our optimal Laffer curve
(one from the left side, the peak and one from the right side, respectively)
to their associated steady-states which correspond to specific points on the
steady-state curve.19 It can be appreciated that the points on the efficient
side of the optimal Laffer curve (e.g., the curve’s peak) can imply long-run
equilibria falling on the slippery side of the steady-state curve. Therefore,
selecting a policy on the basis of steady-state analysis alone, a government
would end up disregarding a number of policy options which are in fact
optimal. How costly this could be can be seen by the distance between the

19Recall that the steady state of our optimal policy model is dependent on the initial
conditions. Each point in our optimal Laffer curve will have its own steady-state.
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optimal Laffer curve and its steady-state counterpart. The policy maker can
more than double the discounted value of tax revenues generated when they
actively exploit transitional dynamics.

-20 -10 0 10 20 30 40 50 60
-200

-150

-100

-50

0

50

100

150

200

250

300
Steady state Optimal Laffer
Dynamic Optimal Laffer
Associated steady state

Figure 5: Optimal Laffer curve and associated steady states

5.2 Laffer Curve Comparison in Dynamic Economy

The main message of the previous section was that Laffer curve analy-
ses should account for the potential gains from exploiting the transition to
steady-state. We found that the Ramsey policy maker would not commit
to the kind of static tax revenue maximizing policy implied by steady-state
calculations when economic transition is accounted for. Instead they would
commit to a policy mix with a less optimal steady-state since this maximizes
discounted revenues generated in transition. In this subsection, we explore
these transitional dynamics and the properties of the optimal tax mix. In
particular, we address two issues. The first one is quantitative: how much
additional fiscal revenues can be raised when the government is pursuing an
optimal dynamic policy rather than adopting constant tax rates as assumed
in conventional Laffer curve calculations? The second issue concerns pol-
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icy design: how should an optimal fiscal policy be carried out during the
economic transition?

To answer the first question, we need to account for the impact of tran-
sitional dynamics in conventional Laffer curve calculations and contrast this
with the one implied by our optimal Laffer curve. Our benchmark will be the
papers by D’Erasmo et al. (2015) and Mendoza et al. (2014), MTZ hence-
forth. MTZ construct capital and labor Laffer curves in dynamic economies
which can be regarded as the dynamic counterpart of Trabandt and Uhlig
(2011). Although the dynamic model enables them to account for transitional
dynamics, the underlying fiscal policy assumes constant tax rates as in Tra-
bandt and Uhlig (2011). We plot these curves with our optimal Laffer curve
in Figure 6. The capital Laffer curve, again, does not facilitate the efficient
generation of tax revenues. Therefore, we focus on the comparison between
our optimal Laffer curve and MTZ’s labor Laffer curve. The differences in
these two curves are striking. At their peak, the sustainable government
debt over GDP under the Ramsey policy is more than 93% higher than the
constant tax rates used in MTZ. Since the peak of MTZ’s labor Laffer curve
and our optimal Laffer curve occur at similar welfare levels, this means that
the optimal policy could greatly enhance the amount of tax revenues raised
at practically no additional welfare cost. In addition, differences in debt sus-
tainability appear to be of broadly similar magnitude everywhere along the
Laffer curve measuring about 63% of GDP. By inverting this argument, it
can be noted that in sustaining the same level of debt optimal policy typ-
ically offers welfare gains of about 4% in constant consumption equivalent
units. Therefore, we conclude that an optimal policy has strong quantitative
implications for debt sustainability, tax revenues and welfare gains.

To illustrate the second issue as to how the optimal fiscal policy under-
lying our optimal Laffer curve is carried out during transition, we plot the
transitional dynamics associated with a particular welfare loss of 1.53% under
both the optimal policy and MTZ’s constant tax rates in Figure 7. We note
that with the constant tax rate policy adopted by MTZ there is very limited
variation in the endogenous variables during the transition. In contrast, un-
der the Ramsey policy, capital tax rates are front-loaded and coupled with a
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Figure 6: Comparing dynamic Laffer curves
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complementary cut in the labor tax rate. The capital tax rate then declines
until converging to zero in the steady-state, while the labor income tax rate
rises consistently until achieving a relatively high long-run value. Given the
commitment to abolish capital tax in the long-run and the relatively low
labor taxes during the initial stages of transition, capital keeps accumulating
despite it being taxed at a positive rate. This underpins the core intuition
behind our optimal steady-state: the low tax revenues and the zero capital
tax chosen by the Ramsey planner in the long run imply large gains dur-
ing the transitional dynamics. This can be further appreciated in Figure 8
where the highest revenues are raised when both capital and labor taxes are
at ‘intermediate rates’ and the quantity of capital has reached its maximum.
Therefore, we conclude that the striking gains in revenue generation arise
from a combination of the gradual erosion of capital income taxation, while
at the same time increasing labor income taxation. In other words, the gains
are in part due to using one tax instrument to complement another, as well
as allowing tax rates to vary over time. In the following analysis, we further
explore to what extent the tax revenue generated by the Ramsey policy is
due to complementarity of alternative tax instruments. To do so, we only
allow the Ramsey policy maker to implement one tax instrument.

We construct optimal Laffer curves for both labor and capital taxes, re-
spectively, in each case holding other tax rates fixed at their calibrated levels.
In Figure 9, we compare the labor and capital optimal Laffer curves with the
corresponding steady-state Trabandt-Uhlig and dynamic MTZ Laffer curves.
The left panel of Figure 9 features the labor Laffer curves. Here we see that
the transitional dynamics contained within the MTZ calculation are negligi-
ble as the Trabandt-Uhlig and MTZ labor income Laffer curves are largely
indistinguishable. In contrast, our optimal labor Laffer curve lies signifi-
cantly above these solely as a result of the commitment to decrease and then
gradually increase labor income tax. In contrast, when comparing capital
tax Laffer curves plotted in the right panel, it is the MTZ and our optimal
Laffer curves which are indistinguishable. This is partly because without
the labor tax instrument being freely available to complement capital tax
policy, capital taxes must sustain steady-state debt and cannot achieve the
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Figure 8: Optimal fiscal mix (CE=1.53%)

preferred policy of committing to reduce the capital tax rate to zero in the
long-run. This brings the two forms of capital Laffer curve closer together.
When comparing the labor and capital optimal Laffer curves with the opti-
mal Laffer curve with both instruments as plotted in Figure 6 at their peak,
it can be seen that two-thirds of the gains in terms of increased revenues
are from gradually increasing labor tax during the transition. The other
one-third comes from simultaneously eliminating capital income tax in the
long-run. This finding sharply differs from the calculations of Chari et al.
(1994) who find that, in a model with exogenous capacity utilization, most
of the welfare gains of switching from the calibrated US fiscal policy to the
Ramsey policy arise from the first period capital tax whereas labor tax plays
a nearly irrelevant role. In our model with endogenous capacity utilization,
the ability to exploit the capital tax of the predetermined capital stock is
sharply reduced.
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Figure 9: Comparing Trabandt-Uhlig and MTZ Laffer curves

6 Robustness and Extensions

In describing the basic properties of the Ramsey policy and optimal Laffer
curve, we removed frictions such as capital adjustment costs and capital de-
preciation allowances. We now consider whether reintroducing such factors
significantly affects the results. Following that we consider a range of ex-
tensions to the basic model. These include introducing a risk premium on
sovereign debt and assuming the policy maker is myopic.

6.1 On the Role of Adjustment Costs and Depreciation

Allowances

In this subsection, we consider the implication of reinstating capital adjust-
ment costs and depreciation allowances. These features of the benchmark
model were temporarily removed for analytical convenience. Capital adjust-
ment costs imply that the capital tax base is less elastic than it otherwise
would be. This means that higher tax revenues can be generated across the
MTZ and optimal Laffer curves which account for transitional dynamics. On
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the other hand, depreciation allowance reduces the capital income tax base
and tax revenues.

Figure 10 plots the MTZ and optimal Laffer curves for our benchmark
model with and without adjustment costs or depreciation allowances. It
is clear from the figure that the relative movements in the Laffer curves
across the three types of curve are similar, such that the presence of capital
adjustment costs or depreciation allowances do not affect our main results.
It remains the case that the gains from conducting fiscal policy optimally
dramatically increases the revenues that can be generated at a given welfare
cost.

Figure 10: Comparing Laffer curves with and without adjust. costs

6.2 Risk Premia and Policy Maker Myopia

In previous sections, we have shown how the Ramsey policy can generate a
significant degree of additional revenue relative to conventional approaches
for assessing fiscal sustainability. We find that the gains are driven by a com-
bination of being able to vary the labor tax over time alongside a commit-
ment to eliminate capital taxation in the long-run. Implicitly, the prolonged
transition to this time-inconsistent steady-state is entirely credible and the
benevolent policy maker does not suffer any increased debt service costs when
debt levels are high.

In this section, we explore the implications of relaxing these assumptions.
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We do so in two ways. First, we introduce bond holding costs as a tractable
way of allowing debt service costs to rise with the level of debt. This over-
turns the unit root in steady-state debt ensuring that the economy returns
to a unique steady-state with an associated debt to GDP ratio. However,
it will remain the case that in the long-run the policy maker commits to
eliminate capital taxation. Secondly, we shall relax the assumption that the
policy maker is fully benevolent and introduce a myopia to policy making
which means they wish to delay distortionary tax increases. On its own
this extension would overcome the finely balanced trade-off implied by tax
smoothing and governments would be tempted to allow debt levels to rise
indefinitely. When it is combined with bond holding costs there will be a
unique steady-state and a non-zero long-run capital tax.

6.2.1 Risk premium

Following Heaton and Lucas (1996), we assume that there are Ψt = ψ
2(

dt+1 − d̄
)2 insurance costs to be paid to a financial intermediary for the

household to insure the unit gross return on government bond against repay-
ment risk. This device introduces, in a reduced form way, a risk premium
on government debt which is increasing in its level. Specifically, it produces
a wedge between the interest rate the government pays and the return ef-
fectively realized by the household. This feature alters the bond-pricing
condition such that:

(1 + γ)qt + ψ
(
dt+1 − d̄

)
= β̃

U ′ct+1
(ct+1, 1− lt+1)

U ′ct (ct, 1− lt)
. (31)

We assume that the profits of these financial intermediaries are redistributed
to the household in a lump-sum way.

A crucial consequence of this quadratic cost is to remove the unit root in
government debt and therefore break the dependence of the model steady-
state on initial conditions. In particular, in this version of the model, steady-
state debt will be d = d̄/2.20 At the same time, the main features of the Ram-
sey policy (i.e. zero long-run capital income tax and bounded initial capital

20Debt stationarity is shown in Appendix C.4.
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taxation) are preserved.21 We calibrate d̄ so that the long-run government
debt over GDP is brought back to its pre-crisis level, i.e. d/4y× 100 = 66%.
We consider this a useful reference as it implies that policy makers will seek
to fully overturn increases in debt observed since 2008 and is roughly in line
with the Maastricht criteria Euro-zone countries are required to meet. In
addition, the parameter ψ in the function of insurance costs is related to the
elasticity of interest rate to a 1% increase in debt over GDP with respect
to its long-run level.22 A recent empirical study by Laubach (2009) places
this elasticity between 3 and 4 basis points while arguing that a standard
RBC model tends to produce endogenously an elasticity of 2 basis points
approximately. In the subsequent analysis, we then conservatively adopt a
central value of 2 which corresponds to ψ = 0.0057.23 Under this setting we
produce an optimal Laffer curve, tracing out the relation between sustainable
debt over GDP and welfare loss when risk premia are accounted for and the
optimal fiscal policy is constrained to achieve a long-run equilibrium where
the level of government debt is brought back to its pre-crisis level. Figure
11 plots both the MTZ labor Laffer curve and our optimal Laffer curve with
bond holding costs. We can see this maintains the relative position of the two
Laffer curves, and the substantial revenue gains of conducting fiscal policy
optimally remains.

6.2.2 Government myopia

We further augment the risk-premium model considered above to allow for
an impatient policy maker featuring higher time-discounting than the private

21Properties of the Ramsey policy for the extended model are derived in Appendix C.
22The elasticity of interest rate to a 1% increase in debt over GDP with respect to its

long-run level is defined as ηr,d/4y = ∂r/∂ d
4y = 4y∂r/∂d, where r ≈ log (R) denotes the

net interest rate. To see how ψ is related to ηr,d/4y, we first note that equation (31) in
steady-state implies the following relation that (1 + γ)/R = β̃ − ψ

(
d− d̄

)
. Second, we

solve for R and take logs in both side of equation (31) in steady-state. When ψ is small,
we obtain the following approximation that ∂r/∂d = ψ/

[
β − ψ

(
d− d

)]
≈ ψ. Substituting

this approximation into the definition of ηr,d/4y, gives ηr,d/4y ≈ 4yψ.
23We have also considered the cases where risk-premium elasticity is 1 or 3 basis points,

and set ψ correspondingly to be 0.0028 and 0.0085. These additional results are available
upon request.
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Figure 11: Comparing Laffer Curves with Risk-premium

sector. This assumption will leave our model unchanged, but in the Ramsey
problem the government will discount utility at µβ instead of β, with µ < 1

representing the gap between household and government discount factors.
We can think of this as capturing the shorter horizon governments typically
face relative to the private sector. More specifically, we can interpret µ as the
probability of a government being in charge in the next period, and therefore
1/(1 − µ) is the government’s expected duration. In this framework, two
important characteristics of the Ramsey steady-state, the level of debt and
the capital tax rate, will depend on µ, such that, both the capital tax rate
and the level of debt in steady state will be increasing in the gap between
government and private discounting, and therefore decreasing in µ. The
myopia on the part of the government would tend to support policies which
lead to an unsustainable path for debt.24 However, in the presence of bond
holding costs, this would lead to increasing debt service costs. Eventually,
these rising costs more than offset the myopia of the government and the
policy acts to stabilize debt. This will be at a level above d = d̄/2 and will
also result in a positive rate of capital tax in the long-run.25

We set µ to 0.979 such that the Ramsey steady-state will feature a cap-
24In essence, the myopia captures the various sources of deficit bias discussed in Alesina

and Passalacqua (2016).
25The results of non-zero long-run capital tax rate and the level of steady-state debt are

shown in Appendix C.3 and C.4, respectively.
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ital income tax rate matching the decentralized economy, i.e. τ k = 0.20.
The calibrated value of µ = 0.979 implies an expected government duration
of 12 years. This is quite an extreme assumption of the degree of myopia
experienced by the government given that many of the policies governments
pursue have significantly longer periods of gestation before their full benefits
are realized. In addition, we keep d at the value set above. The long-run
level of debt will rise to about 98.50% of GDP. We construct the optimal Laf-
fer curve for this model and compare it with the optimal Laffer curve with
the risk-premium only in Figure 12. The optimal Laffer curve produced by
the model with the additional assumption of government myopia always lies
beneath the one for the risk-premium alone, meaning that for the same level
of government debt to be sustained, the model with myopia implies larger
welfare costs. However, the marginal increase in costs due to adding myopia
is relatively small at high levels of debt but larger at low levels of debt.
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Figure 12: Comparing Laffer curves with Risk-premium and Myopia

To see why this is the case, Figure 13 plots the transitional dynamics
for a number of endogenous variables at different initial debt to GDP ratios
(e.g. 0%, 58% 122%). When the initial debt level is high (e.g. 122%),
in the medium term, policy can still promise to reduce capital taxation to
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very low levels, thereby at least initially mimicking the promises inherent
in the benchmark optimal Laffer curve over a more compressed time scale.
In contrast, when initial debt levels are relatively low (e.g. 0% and 58%),
we cannot obtain the combination of falling capital income tax rates and
rising labor income tax rates, which was crucial in generating revenues by
encouraging capital accumulation during the transition.
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Figure 13: Myopic policies for different levels of initial debt

7 Conclusions

In the conventional Laffer curve calculations, discounted tax revenues are
computed on the basis of varying individual tax instruments between 0%
and 100%, while holding all other fiscal instruments constant. These studies
are either carried out in a steady-state economy or a dynamic one but assume
a one-off permanent change in a single tax rate.

Our paper is different from the conventional Laffer curve calculations. We
plot the Laffer curve in welfare loss-sustainable debt space where the welfare
loss captures the costs of the combined distortions implied by varying all
tax rates optimally. As a result, each point on our Laffer curve reflects a
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full Ramsey problem, where the policy maker is optimally varying capital
and labor income tax rates to maximize welfare given the need to satisfy
the government’s intertemporal budget constraint conditional on the initial
level of debt. We find that, by committing to gradually eliminate capital tax
and at the same time raising labor income tax, the optimal policy generates
significant revenues during the economic transition. Tax revenues generated
under optimal policy are up to 93% of GDP higher than those implied by
the conventional Laffer curve calculations. However, this also assumed that
the fiscal authority is fully credible and benevolent, and it does not suffer
any increased debt service costs when debt levels are high.

Therefore, in a subsequent robustness analysis, we enrich the model by
allowing debt service costs to rise with debt levels. This reduces the sustain-
able debt levels achievable by both the conventional and our optimal Laffer
curves, but does not overturn the conclusion that there remain significant
gains either in terms of revenues raised or welfare costs from conducting fis-
cal policy optimally. In addition, we further allow for a significant degree of
policy maker myopia. Although the model with myopia implies larger welfare
costs than the one with debt service costs only, the marginal increase in costs
due to adding myopia is relatively small, especially at high levels of debt.

To sum up, our analysis suggests that conventional approaches to comput-
ing Laffer curves can significantly underestimate the amount of tax revenues
that can be potentially generated or, equivalently, overstate the welfare costs
of achieving a given level of fiscal revenues. In the future research, we will
explore the degree to which time-inconsistency problem affects the revenue
generating powers of a policy maker.
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Appendix

A The Decentralized Economy

The equilibrium conditions of the decentralized economy are summarized be-
low. We remove capital adjustment costs and capital depreciation allowances
(i.e. η = 0 and θ = 0) and fix the consumption tax rate, τ ct , at a calibrated
value consistent with the data, τ ct = τ c. This is to facilitate the derivation of
the primal form of our Ramsey problem.

(1 + γ)qt = β̃
U ′ct+1

(ct+1, 1− lt+1)

U ′ct (ct, 1− lt)
, (A1)

−
U ′lt (ct, 1− lt)
U ′ct (ct, 1− lt)

=
1− τ lt
1 + τ c

wt, (A2)

U ′ct (ct, 1− lt) =
β̃

1 + γ
U ′ct+1

(ct+1, 1− lt+1)

[
1− δ(mt+1)

+(1− τ kt+1)rt+1mt+1

]
, (A3)

(1− τ kt )rt = δ′mt(mt), (A4)

F ′st(st, lt) = rt, (A5)

F ′lt(st, lt) = wt, (A6)

F (st, lt) = ct + gt + (1 + γ)kt+1 − [1− δ(mt)] kt (A7)

mtkt = st, (A8)

gt = g, (A9)

et = e. (A10)

B The Primal Form of the Baseline Model

In this section, we present the primal form for the baseline model. Before
showing how the Lagrangian function of the primal form is constructed, we
first detail the derivation of the implementability constraint. The derivation
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of the other three constraints (i.e. the resource constraint, the capital utiliza-
tion constraint, and the period-0 capital utilization condition) is illustrated
in Section 3 of the maintext.

B.1 The Implementability Constraint

To derive the implementability constraint, we start with the household’s
budget constraint,

(1+τ c)ct+(1+γ)qtdt+1+(1+γ)kt+1 = (1−τ l)wtlt+(1−τ kt )rtmtkt+[1− δ(mt)] kt+dt+e.

(B1)
In addition, to simplify the notation below, we define

zt ≡ (1 + τ c)ct − (1− τ lt )wtlt, (B2)

RK
t ≡

(
1− τ kt

)
rtmt + 1− δ (mt) , (B3)

and substitute the Euler equation (A1) into the above household budget
constraint in (B1) to obtain

dt = zt + (1 + γ)kt+1 −RK
t kt − e+ β̃

U ′ct+1
(ct+1, 1− lt+1)

U ′ct (ct, 1− lt)
dt+1, (B4)

The corresponding expression in period-0 reads

d0 = z0 + (1 + γ) k1 −RK
0 k0 − e+ β̃

U ′ct+1
(ct+1, 1− lt+1)

U ′c0 (c0, 1− l0)
d1. (B5)

We then substitute for all dt>1 recursively in equation (B5). The transversal-
ity conditions lim

t→∞
β̃t+1U ′ct+1

(ct+1, 1− lt+1) dt+1 = 0 and lim
t→∞

β̃tU ′ct (ct, 1− lt)
kt+1 = 0, and the first order condition (A3) imply that the consolidated
budget constraint at period-0 can be simplified to
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d0 +RK
0 k0 =

∞∑
t=0

β̃t
U ′ct (ct, 1− lt)
U ′c0 (c0, 1− l0)

(zt − e) (B6)

Finally, we substitute expression (B2) and (B3) back in (B6), and use the
intratemporal consumption-leisure margin in (A2) to substitute out the labor
tax. Therefore we obtain the implementability constraint,

B −
∞∑
t=0

β̃t
[
U ′ct (ct, 1− lt)

(
ct −

e

(1 + τ c)

)
+ U ′lt (ct, 1− lt) lt

]
= 0,

where

B ≡
{
d0 +

[(
1− τ k0

)
r0m0 + 1− δ (m0)

]
k0

} U ′c0 (c0, 1− l0)

1 + τ c

collects the period-0 terms.
The implementability constraint, the resource constraint, the capital uti-

lization constraint, and the period-0 capital utilization condition are the four
constraints in the primal form of the Ramsey problem for our baseline model.
In the next subsection we derive the Lagrangian function of the primal form
presented in Section 3.

B.2 Ramsey Problem in the Primal Form

The Ramsey problem in primal form consists of maximizing the utility func-
tion,

∞∑
t=0

β̃tU (ct, 1− lt) ,

subject to four contraints. These are the resource constraint

F (mtkt, lt)− ct − gt − (1 + γ)kt+1 + [1− δ(mt)] kt ≥ 0,
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the implementability constraint

B −
∞∑
t=0

β̃t
[
U ′ct (ct, 1− lt)

(
ct −

e

1 + τ c

)
+ U ′lt (ct, 1− lt) lt

]
≥ 0,

the capital utilization constraint for t > 0

U ′ct (ct, 1− lt)
U ′ct+1

(ct+1, 1− lt+1)
=

β̃

1 + γ

[
δ
′

mt+1
(mt+1)mt+1 + 1− δ(mt+1)

]
,

and the period-0 capital utilization condition,

(
1− τ k0

)
F ′s0(m0k0, l0) = δ′m0

(m0) .

The Lagrangian function of the primal form is then constructed as follows

max
{ct,lt,mt,kt+1,τk0 }∞t=0

R =

∞∑
t=0

β̃t



U (ct, 1− lt)
+φ
{
B −

[
U ′ct (ct, 1− lt)

(
ct − e

1+τc

)
+ U ′lt (ct, 1− lt) lt

]}
+λ1

t

[(
1+γ

β̃

)
U ′ct (ct,1−lt)

U ′ct+1
(ct+1,1−lt+1)

− δ′mt+1
(mt+1)mt+1 − 1 + δ(mt+1)

]
+λ2

t [F (mtkt, lt)− ct − g − (1 + γ)kt+1 + (1− δ(mt)) kt]

+ϕ
[(

1− τ k0
)
F ′s0(m0k0, l0)− δ′m0

(m0)
]


,

(B7)
where φ, λ1

t , λ
2
t and ϕ are the four multipliers attached to the resource con-

straint, the implementability constraint, the capital utilization constraint,
and the period-0 capital utilization condition, respectively.

By grouping all terms in (B7) containing the utility function, we define
the objective function as

V (ct, 1− lt, φ, λ1
t ) = U (ct, 1− lt)

+φ

[
U ′ct (ct, 1− lt)

(
ct −

e

1 + τ c

)
+ U ′lt (ct, 1− lt) lt

]
+λ1

t

[(
1 + γ

β̃

)
U ′ct (ct, 1− lt)

U ′ct+1
(ct+1, 1− lt+1)

]
,
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the above Lagrangian function can be then rewritten as follows,

max
{ct,lt,mt,kt+1,τk0 }∞t=0

R =

∞∑
t=0

β̃t


V (ct, 1− lt, φ, λ1

t )

−λ1
t

[
δ
′
mt+1

(mt+1)mt+1 + 1− δ(mt+1)
]

+λ2
t [F (mtkt, lt)− ct − g − (1 + γ)kt+1 + (1− δ(mt)) kt]


− φ

{
B − ϕ

φ

[(
1− τ k0

)
F ′s0(m0k0, l0)− δ′m0

(m0)
]}

(B8)

Where
A ≡ B − ϕ

φ

[(
1− τ k0

)
F ′s0(m0k0, l0)− δ′m0

(m0)
]
.

captures all period-0 constraints including B in the implementability con-
straint and the period-0 capital utilization condition. In Section 3, we present
the Lagrangian function in (B8).

C The Primal Form of the Extended Model

This section derives the primal form for our extended model in Section 6.
Due to the presence of risk premium on government bond, households pay
an insurance, Ψt = ψ

2

(
dt+1 − d̄

)2, to a financial intermediary to secure a unit
return on government bond against repayment risk. In addition, the profits
of such as a financial institution, εt, are redistributed to households in a
lump-sum way. Therefore, the household budget constraint is modified as
follows,

(1 + τ c)ct + (1 + γ)qtdt+1 + (1 + γ)kt+1 + Ψt

= (1− τ l)wtlt + (1− τ kt )rtmtkt + [1− δ(mt)] kt + dt + e+ εt.

Since the financial intermediary has zero marginal and fixed costs, Ψt = εt

holds in equilibrium. In addition, the Euler equation (A1) is modified to
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incorporate the insurance costs as follows,

(1 + γ)qt + ψ
(
dt+1 − d̄

)
= β̃

U ′ct+1
(ct+1, 1− lt+1)

U ′ct (ct, 1− lt)
. (C1)

Therefore, the presence of insurance costs alters the implementability con-
straint derived above, while the other constraints (i.e. the resource constraint
and the capital utilization constraint) remain the same as in the baseline
model.

In the following subsections, we derive the new implementability con-
straint for our model with risk premium, and then we will show the La-
grangian function of the primal form Ramsey problem with both risk pre-
mium and government myopia.

C.1 The Implementability Constraint with Risk Premia

By substituting the new Euler equation in (C1) into the household budget
constraint, we get:

(1 + τ c)ct − ψ
(
dt+1 − d̄

)
dt+1 + β̃

U ′ct+1
(ct+1, 1− lt+1)

U ′ct (ct, 1− lt)
dt+1 + (1 + γ)kt+1 =

(1− τ l)wtlt + (1− τ kt )rtmtkt + [1− δ(mt)] kt + dt + e.

(C2)
We then rearrange equation (C2) as follows

dt = zt − ψ
(
dt+1 − d̄

)
dt+1 + (1 + γ)kt+1 −RK

t kt − e

+β̃
U ′ct+1

(ct+1, 1− lt+1)

U ′ct (ct, 1− lt)
dt+1,

(C3)

where zt and RK
t are defined as in equations (B2) and (B3).

The corresponding consolidated budget constraint at period-0 is given by

d0 +RK
0 k0 =

∞∑
t=0

β̃t
U ′ct (ct, 1− lt)
U ′c0 (c0, 1− l0)

[
zt − e

−ψ
(
dt+1 − d̄

)
dt+1

]
.
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Differently from the baseline model, the government debt that describes the
risk premium cannot be easily substituted away. This implies that we cannot
discard the sequence of budget constraints for periods t = 1, 2, 3, ..., after
consolidating at period-0. Therefore, we have a sequence of implementability
constraints for all periods t ≥ 0 for the extended model.

dt +RK
t kt =

∞∑
j=0

β̃j
U ′ct+j (ct+j, 1− lt+j)
U ′ct (ct, 1− lt)

[
zt+j − e

−ψ
(
dt+j+1 − d̄

)
dt+j+1

]
. (C4)

Finally, we substitute the intratemporal consumption-leisure margin in (A2),
the capacity utilization condition (A4) and expression (B2) and (B3) into
the sequence of consolidated budget constraints in (C4), we get the imple-
mentability constraint for period t as follows,

{
dt +

[
δ′mt(mt)mt + 1− δ (mt)

]
kt
} U ′ct (ct, 1− lt)

1 + τ c
=
∞∑
j=0

β̃j
{
U ′ct+j (ct+j, 1− lt+j)×[

ct+j −
ψ
(
dt+j+1 − d̄

)
dt+j+1

1 + τ c
− e

1 + τ c

]
+ U ′lt+j (ct+j, 1− lt+j) lt+j

}
.

(C5)

C.2 Ramsey Problem with Risk-premium and Myopia

in the Primal Form

This subsection outlines the Lagrangian function for the primal form Ramsey
problem with risk premium and myopia. In the latter case, the government
will discount utility at µβ̃, instead of β̃, with µ < 1 representing the gap be-
tween household and government discount factors. In addition, the presence
of a sequence of implementability constraints in (C5) for all t > 0 complicates
the setup of the Lagrangian function of this problem. In order to write the
Lagrangian function in a compact form, we follow Aiyagari et al. (2002) and
Rieth (2017) in defining a recursive multiplier, λ3

t =
λ3t−1

µ
+ υt, with λ3

−1 = 0,
to be attached to the implementability constraint in (C5).
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Therefore, the Lagrangian function is constructed as follow,

max
{ct,lt,mt,kt+1,dt+1}∞t=0

R =

∞∑
t=0

(
µβ̃
)t


U (ct, 1− lt)
+λ1

t

[(
1+γ

β̃

)
U ′ct (ct,1−lt)

U ′ct+1
(ct+1,1−lt+1)

− δ′mt+1
(mt+1)mt+1 − 1 + δ(mt+1)

]
+λ2

t [F (mtkt, lt)− ct − g − (1 + γ)kt+1 + (1− δ(mt)) kt]

+λ3
t

{
U ′ct (ct, 1− lt)

[
ct −

ψ(dt+1−d̄)dt+1

1+τc
− e

1+τc

]
+ U ′lt (ct, 1− lt) lt

}
−υt

{[
dt +

[
δ′mt(mt)mt + 1− δ (mt)

]
kt
] U ′ct (ct,1−lt)

1+τc

}
,


(C6)

where λ1
t and λ2

t again, are multipliers associated with the resource con-
straint and the capital utilization constraint. It is important to clarify that
the period-0 capital utilization condition now is embeded in the new the
implementability constraint for the extended model.

The first order conditions for t ≥ 0 are:

{ct} : λ2
t − U ′ct (ct, 1− lt)− λ3

tU
′
ct (ct, 1− lt)− λ3

tU
′′
ltct (ct, 1− lt) lt =

−λ1
t−1

(1+γ)U ′ct−1
(ct−1,1−lt−1)

µβ̃2U ′ct (ct,1−lt)
2

+λ1
t

1+γ

β̃U ′ct+1
(ct+1,1−lt+1)

+λ3
t

[
ct −

ψ(dt+1−d̄)dt+1

1+τc
− e

1+τc

]
− υt

1+τc

[
dt +

[
δ′mt (mt)mt + 1− δ (mt)

]
kt
]


U ′′ct (ct, 1− lt) ,

(C7)
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{lt} : − λ2
tF
′
lt(mtkt, lt)− U ′lt (ct, 1− lt)− λ3

tU
′
lt (ct, 1− lt)− λ3

tU
′′
lt (ct, 1− lt) lt =

λ1
t−1

(1+γ)U ′ct−1
(ct−1,1−lt−1)

µβ̃2U ′ct (ct,1−lt)
2

+λ1
t

1+γ

β̃U ′ct+1
(ct+1,1−lt+1)

+λ3
t

[
ct −

ψ(dt+1−d̄)dt+1

1+τc
− e

1+τc

]
− υt

1+τc

[
dt +

[
δ′mt (mt)mt + 1− δ (mt)

]
kt
]


U ′′ctlt (ct, 1− lt) ,

(C8)

{mt} : λ1
t−1δ

′′

mt(mt)mt = −µβ̃υtδ′′mt (mt)mtkt
U ′ct (ct, 1− lt)

1 + τ c
+

µβ̃λ2
t

[
F
′

mt(mtkt, lt)− δ
′

mt(mt)
]
kt,

(C9)

{kt+1} : λ2
t (1 + γ) = µβ̃λ2

t+1

[
F ′kt+1

(mt+1kt+1, lt+1)mt+1 + 1− δ(mt+1)
]

− µβ̃υt+1

[
δ′mt+1

(mt+1)mt+1 + 1− δ (mt+1)
] U ′ct+1

(ct+1, 1− lt+1)

1 + τ c
,

(C10)

{dt+1} : µβ̃υt+1

U ′ct+1
(ct+1, 1− lt+1)

1 + τ c
= λ3

t

U ′ct (ct, 1− lt)
1 + τ c

(
ψd̄− 2ψdt+1

)
,

(C11)

{c0} : λ2
0 − U ′c0 (c0, 1− l0)− λ3

tU
′
c0

(c0, 1− l0)− λ3
tU
′′
l0c0

(c0, 1− l0) l0

=


λ1

0
1+γ

β̃U ′c1 (c1,1−l1)

+λ3
t

[
c0 −

ψ(d1−d̄)d1
1+τc

− e
1+τc

]
− υ0

1+τc

[
d0 +

[
δ′m0

(m0)m0 + 1− δ (m0)
]
k0

]
U ′′c0 (c0, 1− l0)

(C12)
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{l0} : − λ2
0F
′
l0

(m0k0, l0)− U ′l0 (c0, 1− l0)− λ3
0U
′
l0

(c0, 1− l0)− λ3
0U
′′
l0

(c0, 1− l0) l0

=


λ1

0
(1+γ)

β̃U ′c1 (c1,1−l1)

+λ3
0

[
c0 −

ψ(d1−d̄)d1
1+τc

− e
1+τc

]
− υ0

1+τc

[
d0 +

[
δ′m0

(m0)m0 + 1− δ (m0)
]
k0

]
U ′′c0l0 (c0, 1− l0)

(C13)

{m0} : µβ̃υ0δ
′′
m0

(m0)m0

U ′ct (ct, 1− lt)
1 + τ c

= µβ̃λ2
0

[
F
′

m0
(m0k0, l0)− δ′m0

(m0)
]
,

(C14)
The above set of first order conditions (C7)-(C14) and the three contraints

characterize the solution of Ramsey problem for the extended model.

C.3 Non-zero Long-run capital tax

Introducing risk premium does not alter the zero long-run capital tax result
in the baseline model. However, when allowing for policy myopia, the long-
run capital tax becomes positive and increasing in the degree of myopia.
In this subsection, we show how the two extensions of the model affect the
long-run first order condition with respect to capital.

We first substitute υ and δ′m (m) in the long-run Ramsey first order con-
dition with respect to capital (C10), using the steady-state multiplier of the
implementability constraint and capacity utilization condition to obtain,

λ2(1 + γ) = µβ̃λ2 [F ′k(mk, l)m+ 1− δ(m)]

+ (1− µ) β̃λ3
[
(1− τ k)F ′k(mk, l)m+ 1− δ (m)

] U ′c (c, 1− l)
1 + τ c

(C15)

Given that the Ramsey allocation is a competitive equilibrium, combining
equation (C15) and the long-run intertemporal investment decision under the
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competitive equilibrium,

β̃
[
(1− τ k)F ′k(mk, l)m+ 1− δ(m)

]
= 1 + γ,

we obtain the following expression for the Ramsey capital tax in the long-run:

τ k =
(1− µ)

[
λ2 − λ3U

′
c(c,1−l)
1+τc

]
[F ′k(mk, l)m+ 1− δ (m)][

λ2 − (1− µ)λ3U
′
c(c,1−l)
1+τc

]
F ′k(mk, l)m

. (C16)

In the absence of myopia, µ = 1, the Ramsey capital tax, τ k, is zero in
the long-run, which is consistent with the baseline model. However, under
the assumption of policy myopia, µ < 1, to further show that the Ramsey
capital tax is positive, we need to show that λ2 > λ3U

′
c(c,1−l)
1+τc

, which is difficult
to show analytically, but does hold for our benchmark calibration and any
other permutation of parameters we have tried.

C.4 Debt stationarity

In the extended model, government debt is no longer a unit root process;
instead it will be mean-revering in the long-run. We show below this is the
case.

The steady-state Ramsey first order condition with respect to debt in
(C11) is

d =
β̃ (1− µ)

2ψ
+
d̄

2
,

which implies that without myopia, µ = 1, Ramsey policy will prescribe d =
d̄
2
. However, under the assumption of government myopia, µ < 1, d > d̄

2
and

increasing in the degree of Myopia. In both cases, the Ramsey solution im-
plies a unique long-run level of debt independent from the initial conditions.
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C.5 Bounded period-0 capital tax

In the extended model, the trade-off in the period-0 capital tax optimality
condition remains qualitatively unchanged, when choosing the period-0 capi-
tal tax, the government will still trade-off the benefit of reducing debt burden
versus the cost of household reducing capacity utilization.

D Measuring Welfare Costs

In our Laffer curve calculations welfare associated with alternative fiscal poli-
cies (and revenues) are computed in equivalent constant consumption units
as in Schmitt-Grohé and Uribe (2007). This procedure is a natural way for
quantitatively comparing welfare across alternative policies when the utility
function does not support a cardinal interpretation. We briefly outline the
procedure below. Consider two alternative policy regimes A and B, we define
life-time welfare as:

WA = E0

∞∑
t=0

β̃tU
(
cAt , 1− lAt

)
(D1)

and

WB = E0

∞∑
t=0

β̃tU
(
cBt , 1− lBt

)
(D2)

Let us denote λc the welfare cost of adopting the policy regimes B in
place of the policy regimes A in terms of constant consumption units. Then
λc would be implicitly defined as:

WB = E0

∞∑
t=0

β̃tU
(
(1− λc) cAt , 1− lAt

)
(D3)

For the utility function we employ the above expression can be re-written as:

WB = E0

∞∑
t=0

β̃t

[
(1− λc) cAt

(
1− lAt

)a]1−σ
1− σ

=
(1− λc)1−σ

1− σ
WA (D4)

52



and solving for λc we obtain:

λc = 1−
[
WB

WA
(1− σ)

] 1
1−σ

(D5)
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