Real Options in Environmental Policy

Workshop on Environmental Policy Options

June 19th-20th, 2023, Durham, United Kingdom

Yuri Lawryshyn and Reilly Pickard

Agenda

- Climate change
- Environmental policy landscape
- Real options in environmental policy
- Literature review summary
- Case studies
 - Innovation subsidies versus consumer subsidies: A real options analysis of solar energy
 - The impact of Norwegian-Swedish green certificate scheme on investment behavior: A wind energy case study
- Conclusions

Climate Change

Climate Change

From: https://climate.nasa.gov/

Atmospheric CO₂ Levels

Climate Change Evidence

Global temperature is rising

Oceans are getting warmer

Ice sheets are shrinking

Glaciers are retreating

Climate Change Evidence

Snow cover is decreasing

Sea levels are rising

Extreme events are increasing

Ocean acidification is increasing

Environmental Policy Landscape

Environmental Policy History

- Earliest sewers constructed in Mohenjo-daro (Pakistan) c. 2500– 1700 BCE and ancient Rome
- Ancient Greece (2300 years ago) created laws governing forest harvesting
- Feudal European societies established hunting preserves
- Paris developed Europe's first large-scale sewer system (17th century)
- Industrialization led to regulations to protect human health and natural landscapes (Yellowstone National Park – first national park, 1872)

https://www.britannica.com/topic/environmental-policy

Environmental Policy History¹ (USA)

- ERA I Resource Use
 - 200 year period from 17th to 19th centuries
 - Laws were grounded in the anthropomorphic belief that nature and its natural resources were meant for productive human use
- ERA II Conservation
 - Late 19th and eary 20th centuries
 - Conservation ideals surfaced as part of a progressive legal reform movement, realizing a finite supply of natural resources and conservation laws were put in place but were to be anthropomorphic, motivated by what was in the best interest for humans
- ERA III Preservation
 - Began to appear in mid-20th century
 - Awareness that some natural resources and iconic vistas, as well as various wildlife species and historic sites, were disappearing
 as a result of the resource policies of the previous two eras led to laws centered around preservation but continued to be
 centered on anthropocentric values
- ERA IV Protection
 - Latter half of 20th century
 - Realization that human activity was polluting and poisoning natural resources that were impacting human health and wealth, and policies began to include economic models
 - Chemicals: pesticide, mercury controls 1950s
 - Clean Air Act (USA) 1970
 - Clean Water Act (USA) 1972
- ERA V Climate Change?

¹ https://scholarship.law.wm.edu/cgi/viewcontent.cgi?article=1609&context=wmelpr (2014)

Climate Change Awareness

ExxonMobil: Oil giant predicted climate change in 1970s

(https://www.bbc.com/news/science-environment-64241994)

International Climate Change Policies

https://ppp.worldbank.org/public-private-partnership/understand-international-climate-policy-landscape

Evaluation Methods in Environmental Policy

- Watkiss et al. (2015)
 provided a critical review
 and assessment of existing
 economic decision support
 tools
- ROA most useful when:
 - Large irreversible capital decisions
 - Climate risk probabilities known or good information
 - Good quality data exists for major cost/benefit components

Flawed Modelling and the Role of Real Options

- Why Environmental Policies Fail (Laitos&Wolongevicz)¹
 - Flawed assumptions
 - Inaccurate models (scientific and economic)
- Real options models can enhance policy / decision making
 - Carbon pricing and emissions trading
 - Renewable energy subsidies
 - Natural resource management
 - Infrastructure development

¹ https://scholarship.law.wm.edu/cgi/viewcontent.cgi?article=1609&context=wmelpr (2014)

Introduction: Real Option Basics

Policy Investment Opportunity

Consider a policy with social cost I: implement now (t = 0), or one period in the future (t = 1)?

A) Implement Now:

- Claim immediate benefit of B_0
- At t =1, claim B_{1h} (high payoff) with probability q, (assume $B_{1h}>I$), or B_{1l} (low payoff) with probability 1-q, (assume $B_{1h}< I$)
- $NPV_{now} = B_0 I + \gamma (qB_{1h} + (1 q)B_{1l})$

B) Implement at t=1:

- Forego immediate benefit of B_0
- Option to not invest if B_{1l} is not beneficial
- $NPV_{wait} = \gamma(q(B_{1h} I) + \frac{(1 q)(B_{1l} I)}{(1 q)(B_{1l} I)})$

Policy Investment Opportunity

- Policy Implementation NPV:
 - Value of option to wait: $V_0 = NPV_{wait} NPV_{now} = I(1 q\gamma) B_0 \gamma(1 q)B_{1l}$
 - If $V_0>0$ then there is value to wait, i.e., if $B_{1l}<\frac{I(1-q\gamma)-B_0}{\gamma(1-q)}$
- Main Results
 - Currently unattractive projects ($NPV_{now} < 0$) may be attractive in the future
 - Lower B_{1l} leads to higher value in postponing
 - Future positive benefits may not impact decision making (the "bad" dictates)
- Other Results from Real Options Modelling
 - Competition typically increases early investment incentive
 - Incentive to invest to glean more information (value in staging investments)

Real Options in Environmental Policy

Real Options in Environmental Policy

- Real options analysis: a decision-making framework.
- Policymakers and decisionmakers can evaluate the flexibility and potential benefits associated with different policies in dynamic environments.
- Environmental policy characteristics:
 - Long-term investments
 - Considerable future uncertainty in terms of policy, costs and environmental outcomes
 - Many decisions involve irreversible actions

Real Options (Thinking) in Environmental Policy

- Timing and Flexibility
 - Allows policymakers to delay, accelerate, or revise their strategies based on evolving conditions
- Uncertainty and Learning
 - Learn from ongoing monitoring, research, and pilot projects
- Valuing Different Outcomes
 - Allows for the quantification of potential benefits of different policies
- Risk Management
 - Allows policymakers to identify and mitigate potential downside risks while maximizing the upside potential of the chosen policy option
- Stakeholder Engagement
 - Promotes stakeholder engagement and collaboration by explicitly considering the interests and preferences of various stakeholders

Irreversibilities in Environmental Policies

- 2 Types of Irreversibilities (Pindyck 2000)
 - 1) Policies aimed at reducing ecological damage impose sunk costs on society (e.g., investments to reduce emissions)
 - 2) Policies that do not address environmental damage (e.g., global warming due to GHG emissions)
- Importance depends on:
 - 1) Economic uncertainty over the future costs and benefits of environmental damage and its reduction
 - 2) Ecological uncertainty over the evolution of the relevant ecosystem

Real Options in Policy Decisions

- Optimal Time to Invest: Invest today or hold out for more information?
 - Optimal stopping models can illustrate when to stop waiting and invest
 - Predominantly modelled through stochastic (random) processes such as Geometric Brownian motion (GBM)

Environmental Policy: Private vs Social Costs

- Policy is needed when:
 - Private preference is to wait (low waiting cost and high irreversibility)
 - High social benefit in investing now
 - Example:
 - New technology can significantly reduce ecological damage but has high initial cost
 - Government policies are implemented to tax polluters and subsidize investment

Literature Review Summary

Literature Review Summary

- Filtered papers based on:
 - "real options" and "environmental policy" keywords
 - Published 2016 or later
 - Peer reviewed articles
- Total: 24 (plus 2 review papers)
 - 4 non-model opinion papers
 - 2 empirical-based papers
 - 18 model-based papers

Summary of 24 Journal Articles

Application Country

Not specific: 6

• Brazil: 1

• China: 6

• Denmark: 1

• India: 1

• Ghana: 1

Indonesia: 2

 Norway: 1 (shared w/ Sweden)

• Russia: 1

Sweden: 1 (shared w/

Norway)

• Russia: 1

• UAE: 1

• USA: 4

Environmental Target

• Energy related: 17

Land use: 4

• General: 3

Summary of 24 Journal Articles

- Numerical Models:
 - Lattice: 6
 - Least squares Monte Carlo (LSMC): 5
 - Optimal investment in infinite time: 5
 - Market Asset Disclaimer (MAD): 1
 - NPV with simulation: 1
- Almost all models used geometric Brownian motion (GBM) with one GBM and MR

Summary of 24 Journal Articles

 All articles concluded that real options analysis either led to better decision making or provided other advantages

Articles varied in mathematical complexity

In a few cases, the real options formulation was suspect

Contents lists available at ScienceDirect

Energy Policy

journal homepage: www.elsevier.com/locate/enpol

Innovation subsidies versus consumer subsidies: A real options analysis of solar energy

Kiran Torani, Gordon Rausser, David Zilberman*

Department of Agricultural and Resource Economics, U.C. Berkeley, 230 Giannini Hall, CA 94720, USA

HIGHLIGHTS

- Stochastic dynamic model of solar PV adoption under two sources of uncertainty.
- Simulation across electricity prices, technical change, subsidies and CO₂ taxes.
- Rate of technical change indicates shift to solar in 25–28 years without incentives.
- Modest impact of consumer subsidies and CO₂ taxes (up to \$150/ton CO₂) in adoption.
- R&D support/further technological change is the main driver of adoption of solar.

 Question: how to transition to solar energy and which policies are most effective in accelerating adoption?

Uncertainties: electricity price, photovoltaic cell cost

 Model: two-factor optimal stopping problem, empirical analysis using market US data.

Main conclusions:

- Displacement of incumbent technologies and a widespread shift towards solar PV in under 30 years – can occur even without consumer incentives.
- Further technological change is the crucial determinant and main driver of adoption.
- Policy implication:
 - Implement incentives related to R&D investment rather than consumer subsidies

Contents lists available at ScienceDirect

Energy Policy

journal homepage: www.elsevier.com/locate/enpol

The impact of Norwegian-Swedish green certificate scheme on investment behavior: A wind energy case study

Fredrik Finjord, Verena Hagspiel, Maria Lavrutich*, Marius Tangen

Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, 7491 Trondheim, Norway

- Question: how will green certificate subsidy scheme effect the value of renewable energy investments?
- A wind energy case study:
 - Norway: invest before a project deadline to receive green certificates.
 - Sweden: no deadline, but certificates are received for a shorter duration for later investments
- Uncertainties: electricity and green certificate price

- Model: two-factor optimal stopping problem with finite time horizon: Least Squares Monte Carlo. Market data for Norway and Sweden were incorporated
- Main conclusions:
 - Deadlines lower option values and investment thresholds larger effect for shorter deadlines
 - Investment thresholds of both investors decline with certificate duration
 - At current price levels, it is not optimal for either investor to invest before the Norwegian deadline

- Policy implications:
 - Firms' behavior is affected by market uncertainty and by their investment timing flexibility.
 - Failing to consider these effects in policy decisions can jeopardize the intentions.

Conclusions

- Especially in the context of climate change, ROA can help in the implementation of better environmental policies
 - Negative (to the environment) private behaviour can be identified
 - Social benefit can be enhanced
- Many ROA papers continue to be published related to environmental policy providing tools that can be utilized by policy makers
- Real options models can help enhance real options thinking, stakeholder engagement