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1. Introduction  

The case study is a broad church. Case studies come in a great variety of forms, for a great variety of 
purposes, using a great variety of methods -- including both methods typically labelled 'qualitative' and 
ones typically labelled 'quantitative'.2 My focus here is on case studies that aim to establish causal 

conclusions about the very case studied. Much of the discussion about the advantages and disadvantages 

of case study methods for drawing causal conclusions supposes that the aim is to draw causal conclusions 
that can be expected to hold more widely than in the case at hand. This is not my focus. My focus is the 
reverse. I am concerned with using knowledge that applies more widely, in consort with local knowledge, 
to construct a case study that will help predict what will happen in the single case – this case, involving this 
policy intervention, here and now. These involve what philosophers call a ‘singular causal claim’—a claim 

about a causal connection in a specific single individual case, whether the individual is a particular person, a 
class, a school, a village or an entire country, viewed as a whole. 

It is often argued that causal conclusions require a comparative methodology. On this view the 

counterfactual is generally supposed to be the essence of singular causality: In situations where treatment 
T and outcome O both occur, 'T caused O' means3 'If T had not occurred, then O would not have'.4 And it is 

additionally supposed that the only way to establish that kind of counterfactual is by contrasting cases 
where T occurs with those where T does not occur in circumstances that are the same as the first with 
respect to all other factors affecting O than the occurrence of T and its downstream effects.  

My discussion here aims to show that neither of these suppositions is correct.5 Nor do we take them to be 

correct, at least if the dictum ‘Actions speak louder than words’ is to be believed. We all regularly in daily 
life and in professional practice bet on causal claims about single individuals and guide our actions by these 

bets without the aid of comparison. Juries decide whether the defendant committed the crime generally 

without consulting a case just like this one except for the defendant's actions; I confidently infer that it was 
my second daughter (not the first, not my granddaughter, not Santa) who slipped Northanger Abbey into 

my Christmas stocking; and the NASA investigating team decided that the failure of an O-ring seal in the 
right solid rocket booster caused the Challenger disaster in which all 7 crew were killed.  

It might be objected that these causal judgments are made without the rigor demanded in science and 
wished for in policy. That would be surprising if it were generally true since we treat a good many of these 
as if we can be reasonably certain of them. 975 days after the Challenger disaster, Space Shuttle Discovery 

– with redesigned solid rocket boosters –  was launched with five crew members aboard (and it returned 
safely 4 days later). Though not much of practical importance depends on it, I am sure who gave me 
Northranger Abbey. By contrast, people’s lives are seriously affected by the verdicts of judges, juries and 

magistrates. Though we know that mistakes here are not uncommon, nobody suggests that our abilities to 
draw singular causal conclusions in this domain are so bad that we might as well flip a coin to decide on 
guilt or innocence. 

I take it to be clear that singular causal claims like these can be true or false and the reasoning and 

evidence that backs them up can be better or worse. The question I address in Section 3, with a ‘potted’ 

example in Section 4, is: What kinds of information make good evidence for singular causal claims about 

the results of policy interventions, both post hoc evaluations – ‘Did this intervention achieve the targeted 
outcome when it was implemented here in this individual case?’  – and ex ante predictions –  ‘Is this 
intervention likely to produce the targeted outcome if implemented here in this individual case?’ I believe 

                                                 
2
 For a nice discussion of case study types see Morgan 2014; for a good text surveying methods see Bryne and Ragin 

2009. 
3
 Or at least it is supposed that the causal claim is true if and only if the counterfactual is. This has led to endless 

discussion in philosophy of how to treat putative counterexamples, e.g. cases of overdetermination and pre-emption. 
(For further discussion see Menzies 2014.) 
4
 Cf. Menzies 2014. 

5
 For a more detailed discussion see Cartwright Forthcoming.  
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that the catalogue of evidence-types I outline wears its plausibility on its face. But I do not think that is 

enough. Plausible is, ceteris paribus, better than implausible, but it is better still when the proposals are 

grounded in theory -- credible, well argued, well warranted theory. To do this job I turn to a familiar theory 
that is commonly used to defend other conventional scientific methods for causal inference, from 
randomized controlled trials to qualitative comparative analysis, causal Bayes nets methods, econometric 
instrumental variables, and others. In Section 5, I outline this theory and explain how it can be used to 
show that the kinds of facts described in the evidence catalogue are evidence for causation in the single 

case.  

So, what kinds of facts should we look for in a case study to provide evidence about a singular casual claim 

there; for instance, a claim of the kind we need for program evaluation: Did this program/treatment (T) as 
it was implemented in this situation (S) produce an outcome (O) of interest here? Did T cause O in S?  

I call the kinds of evidence one gets from case studies for singular causal claims, individualised evidence. 
This is by contrast with RCTs, which provide what I call anonymous evidence for singular causal claims. I 

shall explain this difference before proceeding to my catalogue because it helps elucidate the relative 
advantages and disadvantages of RCTs versus case studies for establishing causal claims. 

 

2. What we can learn from an RCT 

Individualized evidence speaks to causal claims about a particular identified individual; anonymous, about 
some one or another unidentified individuals. RCTs and group-comparison observational studies provide 

anonymous evidence about individual cases. This may seem surprising since a standard way of talking 
makes it sound as if RCTs establish general causal claims – ‘It works’ – and not claims about individuals at 
all. But RCTs by themselves establish a claim only about averages, and averages only in the population 

enrolled in the experiment. What kind of claim is that? To understand the answer a little formalism is 
required. [See Appendix 1 for more complete development.] 

A genuinely positive effect size in an RCT where the overall effects of other ‘confounding’ factors are 

genuinely balanced between treatment and control groups – let’s call this an ‘ideal’ RCT –  would establish 

that at least some individuals in the study population were caused by the treatment to have the targeted 
outcome. This is apparent in the informal argument that positive results imply causal claims: ‘If there are 
more cases of the outcome in the treatment group than in the control group, something must have caused 
this. If the only difference between the two groups is the treatment and its downstream effects, then the 

positive outcomes of at least some of the individuals in the treatment group must have been caused by the 
treatment.’ 

This is established more formally via the rigorous account of RCT results in common use that traces to 
Rubin (1974) and Holland (1986), which calls on the kind of theory appealed to in Section 5. We assume 

that whether one factor causes another in an individual is not arbitrary but that there is something 
systematic about it. There is a fact of the matter about what factors at what levels in what combinations 

produce what levels for the outcome in question for each individual. Without serious loss of generality, we 
can represent all the causal possibilities that are open for an individual i in a simple linear equation, called a 
potential outcomes equation: 

POE(1):   O(i) c= α(i)T(i) + W(i) 

In this equation the variable O on the left represents the targeted outcome; c= signifies that the two sides 
of the equation are equal and that the factors on the right are causes of those on the left. T(i), which 

represents the policy intervention under investigation, may or may not genuinely appear there; i.e. α(i) 
may be zero.  The equation represents the possible values the outcome can take given various 

combinations of values a complete set of causes for it takes. W(i) represents in one fell swoop all the 
causes that might affect the level of the outcome for this individual that do not interact with the 
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treatment.6 α represents the overall effect of factors that interact with the treatment. ‘Interact’ means that 

the amount the treatment contributes to the outcome level for individual i depends on the value of α(i). 

Economists and statisticians call these ‘interactive’ variables; psychologists tend to call them ‘moderator’ 
variables; and philosophers, ‘support’ variables. For those not familiar with support factors, consider the 
standard philosopher’s example of striking a match to produce a flame. This only works if there is oxygen 
present; oxygen is a support factor without which the striking will not produce a flame. 

Interactive/support variables really matter to understanding the connection between the statistical results 
of an RCT and the causal conclusions inferred from them. The statistical result that is normally recorded in 
an RCT is the effect size. ‘Effect size’ can mean a variety of things. But all standard definitions make it a 

function of this: the difference in outcome means between treatment and control groups. What can this 

difference in the average value of the outcome in the two groups teach about the causal effects of the 
treatment on individuals enrolled in the experiment? What can readily be shown is that in an ideal RCT this 
difference in means between treatment and control is the mean value of α(i), which represents the support 
factors – the mean averaged across all the individuals enrolled in the experiment. So the effect size is a 

function of the mean of the support/interactive variables – those variables that determine whether, and to 

what extent, the treatment can produce the outcome for the individual. If the average of α(i) is not zero, 
then there must be at least some individuals in that population for which α(i) was not zero. That means 

that for some individuals – though we know not which – T genuinely did contribute to the outcome. Thus 
we can conclude from a positive mean difference between treatment and control in an ideal RCT that ‘T 
caused O in some members of the population enrolled in the experiment.’7 

You should also note one other feature of α(i). Suppose that we represent the value of the policy variable in 
the control group from which it is withheld by 0. This is another idealization, especially for social 

experiments and even for many medical ones, where members of the control groups may manage to get 

the treatment despite being assigned to control. But let’s suppose it. Then α(i)T(i) - α(i)C(i) = α(i)T(i) – 0 = 

α(i)T(i), letting C represent the value of the treatment when that treatment is not experienced. So α(i) 
represents also the ‘boost’ to O that i gets from receiving the policy treatment. That is often called ‘the 
individual treatment effect’. 

When could we expect the same positive average effect size in an RCT on a new population? In the abstract 
that is easy to say. First, T must be capable of producing O in the new population. There must be possible 

support factors that can get it to work. If there aren’t, no amount of T will affect O for anyone. Again 
philosophers have a potted example: No amount of the fertility drug Clomiphene citrate will make any man 

get pregnant. In development studies we might use Angus Deaton’s (2009) fanciful example of a possible 

World Bank proposal to reduce poverty in China by building railway stations, a proposal that is doomed to 

failure when looked at in more detail because the plan is to build them in deserts where nobody lives. Then 
the two experiments will result in the same effect size just in case the mean of T’s support factors is the 

same in the two. And how would we know this?  That takes a great deal of both theoretical and local 
knowledge about the two populations in question, knowledge that the RCTs themselves go no way to 
providing.8  

Much common talk makes it sound as if RCTs can do more, in particular that they can establish what holds 

generally or what can be expected in a new case. Perhaps the idea is that if you can establish a causal 

conclusion then somehow, because it is causal, it is general. That’s not true, neither for the causal results 
established for some identified individuals in an RCT nor for a causal result for a single individual subject 
that might be established in a case study. Much causality is extremely local, local to toasters of a particular 
design, to businesses with a certain structure, to fee-paying schools in university towns in the south of 

                                                 
6
 W(i) can include a variable that represents a pure individual effect not shared with others in the population.  

7
 It may be useful to be reminded that the reverse is not true. The mean in treatment and control groups can be the 

same not only because the treatment is ineffective but also if it is helpful to some and harmful to others and the 
effects averaged over the treatment group balance out. 
8
 For further discussion, see Cartwright & Hardie 2012. For a wonderful technical treatment of conditions under which 

different results travel from one population to another see Bareinboim & Pearl 2013. 
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England, to families with a certain ethnic and religious background and immigration history,….  The 

tendency to generalize seems especially strong if ‘the same’ results are seen in a few cases – which they 

seldom are, as can be noted from a survey of meta-analyses and systematic reviews. But that is induction 
by simple enumeration, which is notoriously a bad way to reason. (Swan 1 is white, swan 2 is white…/ so 
the swans in Sydney harbor are white.) 

A study – no matter whether it is a case study or it uses the methodology of the RCT, Bayes nets methods 

for causal inference, instrumental variables or whatever – by itself can only show results about the 
population on which the data is collected. To go beyond that, we need to know what kinds of results travel, 
and to where; and to do that takes a tangle of different kinds of studies, theory, conceptual development, 

and trial and error. This is underlined by work in science studies (cf. Hasok Chang’s (2007) Inventing 

Temperature or Peter Howlett and Mary Morgan’s (2010) How Well Do Facts Travel?) and by recent 
philosophical work on evidence and induction. For instance, John Norton’s (In prep.) material theory of 
induction. Norton argues, “...inductive inferences are justified by facts...”9 where facts include anything 
from measurement results to general principles. Parallel lessons follow from the theory of evidence I 

endorse (Cartwright 2013), the argument theory, in which a fact becomes evidence for a conclusion in the 
context of a good argument for that conclusion, an argument that inevitably requires other premises. 

What I want to underline here with respect to RCTs is that, without the aid of lots of other premises, their 

results are confined to the population enrolled in the study; and what a positive result in an ideal RCT 
shows is that the treatment produced the outcome in some individuals in that population. For all we know 

these may be the only individuals in the world that the treatment would affect that way. The same is true if 
we use a case study to establish that T caused O in a specific identified individual. Perhaps this is extremely 
unlikely. But the study does nothing to show that; to argue it – either way – requires premises from 
elsewhere.  

I also want to underline a number of other facts that I fear are often underplayed.  

 The RCT provides anonymous evidence. We may be assured that T caused O in some individuals in the 

study population but we know not which. I call this ‘Where’s Wally?’ evidence. We know he’s there 
somewhere but the study does not reveal him.  

 The study establishes an average; it does not tell us how the average is made up. Perhaps the policy 
harmful as well as beneficial – it harms a number of individuals though on average the effect is positive.  

 We’d like to know about the variance but that is not so easy. Is almost everyone near the average or do 
the results for individuals vary widely? The mean of the individual effect sizes can be estimated directly 
from the difference in means between the treatment and the control groups. But the variance cannot 
be estimated without substantial statistical assumptions about the distribution. Yet one of the 
advantages of RCTs is supposed to be that we can get results without substantial background 

assumptions.  

 I have been talking about an ideal RCT in a very special sense of ‘ideal’, one in which the net effect of 

confounding factors is genuinely balanced between treatment and control. But that is not what random 

allocation guarantees for confounders even at base-line. What randomization buys is balance ‘in the 

long run’. That means that if we did the experiment indefinitely often on exactly the same population, 
the observed difference in means between treatment and control groups would converge on the true 
difference.  

 That’s one reason we want experiments to have a large number of participants – that makes it more 
likely that what we observe in a single run is not far off the true average, though we know it still should 

be expected to be off a bit and sometimes off a lot. Yet many social experiments, including many 
development RCTs, are done on small experimental populations. 

                                                 
9
 P 2. 
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 Randomization only affects the base-line distribution of confounders. What happens after? Blinding is 

supposed to help control differences, but there are two problems. First a great many social 

experiments are poorly blinded; often everybody knows who is in treatment versus control, from the 
study subjects themselves to those who administer the policy to those who measure the outcomes to 
those who do the statistical analyses, and all of these can make significant differences, Second, without 

reasonable local background knowledge about the lives of the study participants (be they individuals or 
villages) it is hard to see how we have reason to suppose that no systematic differences affect the two 
groups post randomization. 

 Sometimes people say they want RCTs because RCTs measure average effect sizes and we need these 
for cost-benefit analysis. They do, and we do. But the RCT measures the average effect size in the 

population enrolled in the experiment. Generally, we need to do cost benefit analysis for a different 
population, so we need the average effect size there. And the RCT does not give us that.  

I do not rehearse these facts to attack RCTs. RCTs are a very useful tool for causal inference – for inferring 

anonymous singular causal claims. I only list these cautions so that they will be kept in mind in deciding 
which tool – an RCT or a case study or some other method or some combination – will give the most 
reliable inference to singular causal claims in any particular case. 

Turn now to the case study and how it can warrant singular causal claims, in this case individualized ones.  

 

3. A category scheme for types of evidence for singular causation that a case study can provide10 

Suppose a program T has been introduced into a particular setting S in hopes of producing outcome O 
there. We have good reason to think O occurred. Now we want to know whether T, as it was in fact 

implemented in S, was (at least partly) responsible. What kinds of information should we try to collect in 
our case study to provide evidence about this? In this section I offer a catalogue of types of evidence that 

can help. I start by drawing some distinctions. But it is important to make a simple point at the start. I aim 

to lay out a catalogue of kinds of evidence that---if true---can speak for or against singular causal claims. 
How compelling that evidence is will depend on:  

• how strong the link, if any, is between the evidence and the conclusion, 

• how sure we can be about the strength of this link, and 

• how warranted we are in taking the evidence claim to be true. 

All three of these are hostages to ignorance, which is always the case when we try to draw conclusions 

from our evidence. In any particular case we may not be all that sure about the other factors that need to 
be in place to forge a strong link between our evidence claim and our conclusion, we may worry whether 
what we see as a link really is one, and we may not be all that sure about the evidence claim itself. The 

elimination of alternatives is a special case where the link is known to be strong: If we have eliminated 

alternatives then the conclusion follows without the need of any further assumptions. But, as always, we 

still face the problem of how sure we can be of the evidence claim: Have we really succeeded in eliminating 
all alternatives? No matter what kind of evidence claim we are dealing with, it is a rare case when we are 

sure our evidence claims are true and we are sure how strong our links are or even if they are links at all. 
That’s why, when it comes to evidence, the more the better.  

The first distinction that can help provide a useful categorisation for types of evidence for singular causal 
claims is that between direct and indirect evidence: 

• Direct: Evidence that looks at aspects of the putative causal relationship itself to see if it holds.  

                                                 
10

 Material in this section and the next draws on Cartwright Forthcoming, which is available on line. Look there for 
more details.  
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• Indirect: Evidence that looks at features outside the putative causal relationship that bear on the 

existence of this relationship. 

Indirect. The prominent kind of indirect evidence is evidence that helps eliminate alternatives. If O occurred 

in S, and anything other than T has been ruled out as a cause of O in S’s case, then T must have done it. This 
is what Alexander Bird (2010, 345) calls ‘Holmesian inference’ because of the famous Holmes remark that 
when all the other possibilities have been eliminated, what remains must be responsible even if 

improbable. RCTs provide indirect evidence, eliminating alternative explanantions by (in the ideal) 
distributing all the other possible causes of O equally between treatment and control groups. But we don’t 
need a comparison group to do this. We can do this in the case study as well, if we know enough about 

what the other causes might be like, and/or about the history of the situation S. We do this in physics 

experiments regularly. But we don’t need physics to do it. It is, for instance, how I know it’s my cat that 
stole the pork chop from the fry-pan while I wasn’t looking. 

Direct. I have identified at least four different kinds of direct evidence possible for the individualised 
singular causal claim that T caused O in S: 

1. The character of the effect: Does O occur at the time, in the manner and of the size to be expected 
had T caused it? (For those who are familiar with his famous paper on symptoms of causality, 
Bradford Hill (1965) endorses this type of evidence.) 

2. Symptoms of causation: Not symptoms that T occurred but symptoms that T caused the outcome, 
side effects that could be expected had T operated to produce O. This kind of inference is becoming 
more and more familiar as people become more and more skilled at drawing inferences from ‘big 

data’. As Suzy Moat puts it “People leave this large amount of data behind as a by-product of 
simply carrying on with their lives”. Clever users of big data can reconstruct a great deal about our 

individual lives from the patterns they find there.11 

3. Presence of requisite support factors (moderator/interactive variables): Was everything in place 

that needed to be in order for T to produce O? 

4. Presence of expectable intermediate steps (mediator variables): Were the right kinds of 
intermediate stages present? 

Which of these types of evidence will be possible to obtain in a given case will vary from case to case. Any 
of them that we can gather will be equally relevant for post hoc evaluation and for ex ante prediction, 

though we certainly won’t ever be able to get evidence of type 2 (above) before the fact. I am currently 

engaged in an NSF-funded research project, Policy Prediction: Making the Most of the Evidence, that aims 
to use the SCEM framework sketched in Section 5 to expand this catalogue of evidence types and to 
explore more ways to use it for policy prediction.   

 

 

                                                 
11

 At a Spaces of Evidence conference, Goldsmiths, University of London, 26 Sept 2014. See Moat et al. 2014. 
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4. A diagrammatic example 

Let me illustrate with one of those diagrammatic examples we philosophers like, this one constructed from 
my simple-minded account of how an emetic works. It may be a parody of a real case study but it provides 
a clear illustration of each of these types of evidence. 

Imagine that yesterday I inadvertently consumed a very harmful poison. Luckily I realised I had done so and 

thereafter swallowed a strong emetic. I vomited violently and have subsequently not suffered any serious 

symptoms of poisoning. I praise the emetic: It saved me! What evidence could your case study collect for 
that? 

• Elimination of alternatives: There are very low survival rates with this poison. So it is not likely my 
survival was spontaneous. And there’s nothing special about me that would otherwise explain my 

survival having consumed the poison. I don’t have an exceptional body mass, I hadn’t been getting 
slowly acclimatised to this poison by earlier smaller doses, I did not take an antidote, etc.  

• Presence of required support factors (other factors without which the cause could not be expected 
to produce this effect): The emetic was swallowed before too much poison was absorbed from the 

stomach. 

• Presence of necessary intermediate step: I vomited.  

• Presence of symptoms of the putative causes acting to produce the effect: There was much poison 
in the vomit, which is a clear side effect of the emetic’s being responsible for my survival. 

• Characteristics of the effect: The amount of poison in the vomit was measured and compared with 
the amount I had consumed. I suffered just the effects of remaining amount of poison; and the 
timing of the effect and size were just right. 

 

5. Showing this kind of information does indeed provide evidence about singular causation 

I developed the scheme in Section 3 for warranting singular causal claims bottom-up by surveying case 
studies in engineering, applied science, policy evaluation, fault diagnoses, etc. But a more rigorous 
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grounding is possible: these types all provide information relevant for filling in features of a situation-

specific causal equations model [SCEM]. Once you see what a SCEM is, this is apparent by inspection. So I 
will not belabor that point. Instead I will spend time defending the SCEM framework itself.  

A SCEM is a set of equations that express (one version of) what is sometimes called the ‘logic model’ of the 
policy intervention: a model of how the policy treatment T is supposed to bring about the targeted 
outcome O, step-by-step. Each of the equations is itself what in Section 2 was called a ‘potential outcomes 

equation’. (In situations where the kind of quantitative precision suggested by these equations seems 
impossible or inappropriate, there is an analogous Boolean form for yes-no variables, familiar in philosophy 
from Mackie (1965) and in social science, from qualitative comparative analysis.)  

To build a SCEM, start with the outcome O of interest. Just what should the policy have led to at the 
previous stage that will produce O at the final? Let’s call that ‘O-1’. Recalling that a single cause is seldom 

enough to produce an effect on its own, what are the support factors necessary for O-1 to produce O? 
Represent the net effect of all the support factors by ‘α-1’.  Establishing that these support factors were/will 

be in place or not provides important evidence about whether O can be brought about by O-1. If not, then 

certainly T cannot produce O (at least not in the way you expect).  Consider as well what other factors will 
be in place at the penultimate stage that will affect O. These affect the size or level of O. You want to know 

about those because they provide alternative explanations for the level of O that occurs; they are also 

relevant for judging the size T’s contribution would have to be if T were to contribute to the outcome. 
Represent the net effect of all these together by ‘W-1’. How O depends on all these factors can then be 
represented in a potential outcomes equation like this: 

POE (2):   O(i) c= α-1(i)O-1(i) + W-1(i). 

Work backwards step-by-step constructing a potential outcomes equation for each stage until the start 
where T is introduced. The resulting set of equations is the core of the SCEM for this case. 

But there is more. Think about the support factors (represented by the αs) that need to be in place at each 

stage. These are themselves effects; they have a causal history that can be expressed in a set of potential 

outcomes equations that can be added to the core SCEM. This is important information too: Knowing about 
the causes of the causes of an effect is a clue to whether the causes will occur and thus to whether the 
effect can be expected. The factors that do not interact with O-1 (represented by W-1) but that also affect O 

have causal histories as well that can be represented in a series of potential outcomes equations and added 

to the SCEM. So too with all the Ws in the chain. For purposes of evaluation, we may also want to include 
equations in which O figures as a cause since seeing that the effects of O obtain gives good evidence that O 

itself occurred. We can include as much or as little of the causal histories of various variables in the SCEM 
as we find useful. 

I am not suggesting that we can construct SCEMs that are very complete. But I do suggest that this is what 
Nature does. Even in the single case, what causes what is not arbitrary – at least not if there is to be any 

hope that we can make reasonable predictions, explanations, and evaluations. There’s a system to how 
Nature operates and we have learned that generally this is what the system is like:  Some factors can affect 

O in this individual and some cannot. All those that can affect an outcome appear in Nature’s own potential 

outcomes equation for that outcome. Single factors can seldom contribute on their own so the separate 
terms in Nature’s equations will generally consist of combinations of mutually interacting factors. So 
Nature’s equations look much like ours. Or, rather, when we do it well, ours look much like Nature’s since 
hers are what we aim to replicate. 

So: A successful SCEM for a specific individual provides a concise representation of what causal sequences 
are possible for that individual given the facts about that individual and its situation  – what values the 

quantities represented can take in relation to values of their causes and effects. Some of the features 
represented in the SCEM will be ones we can influence and some of these are ones we would influence in 

implementing the policy; others will take the values that naturally evolve from their causal past. The 
interpretation of these equations will become clearer as I defend their use.  
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I offer three different arguments to support my claim that SCEMs are good for treating singular causation: 

1) their use for this purpose is well-developed in the philosophy literature; 2) singular causation thus 

treated satisfies a number of common assumptions; 3) the potential outcomes equations that make up a 
SCEM are central to the formal defense I described in Section 2 that RCTs can establish causal conclusions.12 

1) The SCEM framework is an adaptation for variables with more than two values of J.L. Mackie’s (1965) 
famous account in which causes are INUS conditions for their effects. In the adaptation, causes are INUS 

conditions for contributions to the effect,13 where an INUS condition for a contribution to O(i) is an 
Insufficient but Necessary part of an Unnecessary but Sufficient condition for a contribution to it.  Each of 
the additive terms (α(i)T(i) and W(i)) on the right of the equation O(i) c= α(i)T(i) + W(i) represents a set of 

conditions that together are sufficient for a contribution to O(i) but they are usually unnecessary since 

many things can usually contribute to O; and each component of an additive term (e.g. α(i) and T(i))) is an 
insufficient but necessary part of it – both are needed and neither is enough alone. This kind of situation-
specific causal equations model for treating singular causation is also familiar in the contemporary 
philosophy of science literature, especially because of the widely respected work of Christopher 
Hitchcock.14 

2) The SCEM implies a number of characteristics for singular causal relations that they are widely assumed 
to have: 

 the causal relation is irreflexive (nothing causes itself) 

 the causal relation is asymmetric (if T causes O, O does not cause T) 

 causes occur temporally before their effects 

 there are causes to fix every effect 

 causes of causes of an effect are themselves causes of that effect (since substituting earlier causes of 
the causes in an equation yields a POE valid for a different coarse graining of the time)15 

 causal relations give rise to non-causal correlations.16 

3) Each equation in a SCEM is a potential outcomes equation of the kind that is used in the Rubin/Holland 
argument I laid out in Section 2 to show that RCTs can produce causal conclusions: A SCEM is simply a 
reiteration of the POE used to represent singular causation in the treatment of RCTs, expanded to include 
causes of causes of the targeted outcome and, sometimes, further effects as well. So, if we buy the 

Rubin/Holland argument about why a positive difference in means between treatment and control groups 
provides evidence that the treatment has caused the outcome in at least some members of the treatment 

group, it seems we are committed to taking POEs, and thus SCEMs, as a good representation of the causal 
possibilities open to individuals in the study population.  

Warning: Equations like these are sometimes treated as if they represent ‘general causal principles’.  That’s 
a mistake. To see why, it is useful to think in terms of a 3-fold distinction among equations we use in 
science and policy, and similarly for more qualitative principles: 

 Equations and principles that represent the context-relative causal possibilities that obtain for a specific 
single individual, as in the SCEMs discussed here. 

                                                 
12

 As mentioned in Section 2, they are similarly central to the defence of a variety of other methods for causal 
inference though I don’t show that here. 
13 Note: that all causes are INUS conditions does not imply that all INUS conditions are causes.  
14

 Cf. Hitchcock 2007. 
15 Philosophers sometimes reject this assumption but it is important to have for predicting effects separated by 
longish time periods from the policy initiation. 
16 E.g., consider a cause c with two effects, e1 and e2 with no other causes. Supposing determinism, e1 obtains if and 
only if e2 obtains. That is not among the causal equations. But it obtains on account of them. 
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 Equations and principles that represent the context-relative causal possibilities for a specific 

population. These often look just like a SCEM so it appears as if the causal possibilities are the same for 

every member of the population. This can be misleading for two reasons. First, for some individuals in 
the population some of the α(i)s may be fixed at 0 so that the associated cause can never contribute to 
the outcome for them. Second, the W(i)s can contain a variable that applies only to the single individual 

i (as noted in footnote 5). So there can be unique causal possibilities for each member of the 
population despite the fact that the equation makes it look as if they are all the same. 

 Equations and principles that hold widely. I suggest reserving the term ‘general principles’ for these, 
which are relatively context free, like the law of the lever or perhaps ‘People act so as to maximize their 
expected utility.’  These are the kinds of principles that we suppose ground the single-case causal 
possibilities represented in SCEMs and the context-relative principles that describe the causal 
possibilities for specific populations. These general principles tend to employ very abstract concepts by 
contrast with the far more concrete, operationalizable ones that describe study results on individuals 
or populations, abstract concepts like ‘utility’, ‘force’, ‘democracy’. They also generally different in form 
from SCEMs. Think, for instance, about the form of Maxwell’s equations, which ground the causal 
possibilities for any electromagnetic device: these are not SCEM-like in form at all. It is in an 
instantiation of these in a real concrete arrangement located in space and time that genuine causal 
possibilities, of the kind represented in SCEMs, arise.  

I note the differences between equations representing general principles and those representing causal 

possibilities for a single case or for a specific population to underline that knowing general principles is not 
enough to tell us what we need to predict policy outcomes for specific individuals, whether these are 

individual students or classes or villages, considered as a whole, or specific populations in specific places. 
Knowing Maxwell’s principles will not tell you how to repair your Christmas-tree lights. For that you need 
context-specific local knowledge about what the local arrangements are that call different general 

principles into play both together and in sequence. That’s what will enable you to build a good SCEM that 
you can use for predicting and explaining outcomes. The same unfortunately is true for the use of general 

principles to predict the results of development and other social policies. Good general principles should be 

very reliable but it takes a lot of thinking and a lot of local knowledge to figure out how to deploy them to 
model concrete situations. This is one of the principal reasons we need case studies. 

Thinking about how local arrangements call different general principles into play or not is key to how to 
make good use of our general knowledge to build local SCEMs. Consider a potted version of the case of the 
failure of the class-size reduction program that California implemented in 1996/97 based on the successes 

of Tennessee’s STAR project (which was attested by a good RCT) and Wisconsin’s SAGE program. Let us 
suppose for purposes of illustration that these three general principles obtain widely: 

 Smaller classes are conducive to better learning outcomes. 

 Poor teaching inhibits learning. 

 Poor classroom facilities inhibit learning. 

In Tennessee, imagine, there were good teacher-training schools with good routes into local teaching 
positions and a number of new schools with surplus well-equipped classrooms that had resulted from a 
vigorous, well-funded school building program. In California there was a great deal of political pressure and 

financial incentive to introduce the program all at once (it was rolled out in most districts within three 
months of the legislation being passed); there were few well-trained unemployed teachers and no vigorous 

program for quick recruitment; and classrooms, we can suppose, were already overcrowded. These 
arrangements in California called all three principles into play at once; and – so this story goes – the good 
effects promised by the operation of the first principle were outweighed by the harmful effects of the other 
two.  Learning outcomes did not improve across the state and in some places got worse.17 The 

                                                 
17

 For a serious account of what happened, see Stecher & Bohrnstedt 2002.  
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arrangements in Tennessee called into play only the first principle which accounts for the improved 

outcomes there. 

How would you know whether to expect the results in California to match those of Tennessee and 

Wisconsin? Not by looking for superficial ‘similarities’ between the two. I recommend a case study, one 
that builds a SCEM for California, modelling the sequential steps by which the policy is supposed to achieve 
the targeted outcomes and then modelling what factors are needed in order for each step to lead to the 

next and what further causes are supposed to ensure that these factors are in place. We can’t do this 
completely, but reviewing the California case, it seems there was ample evidence—evidence of the kinds 
laid out in the catalogue of Section 3—to fill in enough of the SCEM to see that a happy outcome was not to 
be expected. 

 

6. Conclusion 

How much evidence of the kinds in my catalogue and in what combinations must a case study deliver and 

how secure must it be in order to secure a reasonable degree of certainty about a causal claim about the 
case? There’s no answer. That’s a shame. But it is not peculiar to case studies. It is true for all methods for 
causal inference.  

Consider the RCT. If we suppose the treatment does satisfy the independence assumptions noted in the 

Appendix, we can calculate how likely a given positive difference in means is if the treatment had no effect 
and the difference was due entirely to chance. But for most social policy RCTs there are good reasons to 

suppose the treatment does not satisfy the independence assumptions. The allocation mechanism often is 
not by a random-outcome device; there is not even single blinding let alone the quadruple we would hope 
for (of the subjects, the program administrators and overseers, and those who measure outcomes, and 

those who do the statistical analysis); numbers enrolled in the experiment are often small; dropouts, non-

compliance, and control group members accessing the treatment outside the experiment are not carefully 

monitored; sources of systematic differences between treatment and control groups after randomization 

are not well thought through and controlled; etc. – the list is long and well known. Often this is the best we 
can do and it is often better than nothing. The point is that there are no formulae for how to weigh all this 
up to calculate what level of certainty the experiment provides that the treatment caused the outcome in 

some individuals in the experimental population. Similarly, with all other methods of causal inference. 

Some things can be calculated – subject to assumptions. But there is seldom a method for calculating how 
the evidence that the assumptions are satisfied stacks up, and often, we even have little general idea about 

what that evidence should look like. Judgment – judgment without rules to fall back on – is required in all 
these cases. I see no good arguments that the judgments are systematically more problematic in case 
studies than anywhere else. 

The same holds when it comes to expecting the same results elsewhere. Maybe if you have a big effect size 

in an RCT with lots of subjects enrolled and good reason to think that the independence assumptions were 
satisfied, you have reason to think that in a good number of individuals the treatment produced the 

outcome. For a single case study, you can have at best good reason to think that the treatment caused the 

outcome in one individual. Perhaps knowing it worked for a number of individuals gives better grounds for 
expecting it to work in the next. Perhaps not. Consider economist Angus Deaton’s suggestions about St 
Mary’s school, which is thinking about adopting a new training program because a perfect RCT elsewhere 
has shown it improves test scores by X. But St Joseph’s down the road has adopted the program and got Z. 

What should St Mary’s do? It is not obvious, or clear, that St Joe’s is not a better guide than the RCT, or 
indeed an anecdote about another school. After all, St Mary’s is not the mean, and may be a long way from 

it. Which is a better guide – or any guide at all –  depends on how similar, in just the right ways, the 
individual/individuals in the study are to the new one we want predictions about. And how do we know 
what the right ways are? Well, a good case study at St Joe’s can at least show us what mattered for it to 
work there, which can be some indication of what it might take to work at St Mary’s since they share much 
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underlying structure.18 In this case it looks like the advantage for exporting the study result may lie with the 

case study and not with the higher numbers. 

Group comparison studies do have the advantage that they can estimate an effect size – for the study 

population. That may be just what we need; for instance, in a post hoc evaluation where the program 
contractors are to be paid by size of result. But we should beware of the assumption that this number is 
useful elsewhere. We have seen that it depends on the mean value of the net contribution of the 

interactive/support factors in the study population. It takes a lot of knowledge to warrant the assumption 
that the support factors at work in a new situation will have the same mean.  

What can we conclude in general then about how secure causal conclusions from case studies are or how 
well they can be exported? Nothing. But other methods fare no better.  

There is one positive lesson we can draw. We often here the claim that case studies may be good for 
suggesting causal hypotheses but it takes other methods to test them. That is false. Case studies can test 

causal conclusions.  And a well done case study can establish causal results more securely than other 

methods if they are not well carried out or we if have little reason to accept the assumptions it takes to 
justify causal inference from their results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
18

 Here’s yet another source of uncertainty in both cases. The – often unknown or ill-understood – underlying 
structure matters to what can help a cause to operate. What enable a cause to work in given one underlying structure 
need not enable it to work where other structures obtain. Putting gas in my Volvo enables the car to go when I turn 
the ignition on; but not in a diesel Audi 3; and reducing class sizes in Tennessee and Wisconsin improved learning 
outcomes but not in California. 
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Appendix 1 

The Rubin/Holland analysis, which is also widely adopted by economists discussing RCTs, begins with a 
singular counterfactual difference: that between the value that the outcome (say xk(i)) would have in the 

individual case i were i subject to the treatment (xk
T(i)) and the value it would have in i were i subject to the 

control (xk
C(i)). It is assumed that the possible values xk can take for i are determined19 by a complete set of 

possible causes of xk that might act on i during the relevant time period given the actual situation of i, 
including possibly the treatment T (which in this simple case gets value 1 in the treatment group and 0 in 
the control). This gets represented in the potential outcomes equation: 

POE:   xk(i) c= αT(i)T(i) + ∑αj(i)xj(i) 

In this equation the variables on the left represent the targeted outcome; c= signifies that the two sides of 
the equation are equal and that the factors on the right are causes of those on the left. T(i) may or may not 

genuinely appear there; i.e. αT(i) may be zero.  The equation represents the possible value the outcome can 

take given various combinations of values a complete set of causes for it take. Besides the treatment there 
are J possible additive causes as well as those that make up the interactive factor αT(i) (which may turn out 
to be 0), most unknown or unobservable.  

Now consider treatment (T = 1) and control (T = 0) groups and calculate averages. Imagine that random 

assignment and blinding have succeeded as hoped in ensuring that T is orthogonal in the mean to the net 
effect of other causal factors (αT(i) and ∑αj(i)xj(i)), in which case, using Exp for ‘expectation’ 

(1) Exp (xk
T(i) – xk

C(i)) = Exp xk
T(i) – Exp xk

C(i) = Exp αT(i) 

So the middle term (the difference in means between the treatment and control groups, which is 

observable) is an unbiased estimator of Exp αT(i). Given the causal interpretation proposed of the potential 
outcomes equation, a genuinely positive effect size shows that αT(i) ≠ 0 for some i, i.e. that (in the long run 

of experiment repetitions) the treatment will have caused the outcome in at least some individuals in the 
treatment group. Note that the observed effect size is the estimated mean of the individual treatment 

effects which in turn is the estimated mean of αT(i). By inspection αT(i) represents the net effect of the 
interactive/support factors that fix whether, and to what degree, T can contribute to xk in individual case i.  

 

 

 

 

 

 

 

 

 

 

 

                                                 
19 The scheme can be adapted to deal with merely probabilistic causation but I won’t do that here to keep notation 
simple. 
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Appendix 2 

A SCEM is a set of equations in block triangular form:20  

(1) x1(i) c= μ 

x2(i) c= a21(i) x1(i)  

... 

xn c= ∑anj(i) xj(i) 

 

SCEMs provide a concise representation of what causal sequences are possible in a specific case given the 
facts about that case – what values the quantities represented can take in relation to values of their causes 

and effects. Each equation is itself a potential outcomes equation. The variables are time ordered so that 
for xj<k, xj occurs simultaneous with, or earlier than, xk.  As with a single POE, variables on the left represent 

effects, one of which will be the targeted outcome; c= signifies that the two sides of the equation are equal 
and that the factors on the right are causes of those on the left.   

Warning. In addition to the warning in Section 5, I offer some further, more technical cautions here. The 

linear simultaneous equations forms that appear in a SCEM are also familiar within social science, e.g. from 

the work of Herbert Simon (1957) on causality, in path analysis, in econometrics, as the basis for Judea 
Pearl’s causal Bayes nets work,21 etc.  I say ‘warning’ because I see two related problems cropping up. First, 
the equations show relations between quantities but they do not express which populations of individual 

cases these relations hold for, and often this is not made clear in social science uses. I use these equations 
for identified individual cases. Second, generally some of the variables are labelled ‘exogenous’ 

(determined outside the system of equations, indicated by the µ in the first equation) and a joint 

probability is supposed for them. This supposes some population of individual cases to which this 
probability applies, but again, which population that is – or why we should suppose there is a probability to 
be had for those variables in that population – is usually not specified. 

 

   

                                                 
20 Block triangularity to allow multiple simultaneous effects with the same causes. 
21

 Cf. Pearl 2000. 
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