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Background and premise
• Recall the start of the pandemic
• New disease, spreading rapidly
• Will we have enough hospital beds?
• Intensive Care capacity?

• Information gap
• Little information or data
• Hospitals needed information, and quickly
• Rapid decisions were required for bed planning
• Modelling studies informed such decisions

Report 9, Ferguson et al, 16 March 2020



ICBs decide what services are needed 
for local populations; fund providers; 
ensue services are provided

• population of around 1,000,000

• primarily urban, 16% live in some of the 
most deprived areas of England

• urgent, emergency, elective hospital care

• maternity, rehabilitation, mental health

• primary and community health services

• total expenditure: £1.615 Billion 
(2020/21) and rising

Study setting
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Intensive Care (IC) surge capacity model
‒ How many deaths could we expect given 

different levels of bed capacity?
‒ How can we reduce capacity-dependent 

deaths?
‒ Modelling performed during first wave in the 

UK (Spring 2020)

Study 1



Capacity-independent deaths
Cannot be reduced other than by 

improvements in clinical treatments

Capacity-dependent deaths
Can be mitigated through effective planning

Capacity-(in)dependent deaths

Adjusted national forecasts for the 
hospital under consideration



Inputs: length of stay (in IC bed)

• Data available for 4,078 COVID-19 intensive unit admissions in UK (source: ICNARC)
• Information only available for median and IQR
• 2-parameter Gamma distribution fitted by matching these 3 quartiles
• Good fit obtained
• Mean fitted LOS was 8.07 days Quartile 1 Median Quartile 3

Empirical 3.5 days 6.5 days 11 days

Fitted 3.49 days 6.52 days 10.99 days



Inputs: probabilities of death

• Probability of death for patient admitted to IC = 0.507
(n=4078, ICNARC data)

• Probability of death for patient refused IC admission = 0.99
(assumed, based on clinical judgement)



• Inputs calibrated for a major tertiary hospital in Bristol, UK
• Hospital typically had 45 intensive care beds
• Surge capacity could increase number of beds to:

– 76 beds (first surge level)
– 100 beds (second surge level)

Baseline conditions



Results

Total deaths reduced by 
14% if IC beds can be 

increased from 45 to 100

If LOS ↑ 25% then 
2.5% more deaths

Capacity-dependent and 
total deaths much 

reduced if ‘curve can be 
flattened’



• Potential gain from converting existing clinical areas to intensive care specification 

• Potential gain from investing in efforts to reduce length of stay (e.g. weaning)

• Better understanding of workforce requirements

• Informed the capacity requirements of temporary mortuaries

• Timing and scale of when elective surgeries may resume

Implications



Intensive Care (IC) triage model
‒ Should access for certain patients be 

prioritised or restricted?
‒ How many lives, and life-years, would be 

saved?
‒ Modelling performed in advance of second / 

further waves (late Summer 2020)

Study 2



Why triage?

• Some patients have a very small chance of benefitting from IC (e.g. very old people, 
those with severe underlying conditions)

• If capacity was unlimited then everyone could be given a chance

• When IC beds are under pressure then restricting and/or prioritising access (triaging) 
may lead to reduced total number of deaths through admitting those with greatest 
survival chances

• As well as reducing deaths (increasing lives saved) triage may also increase the 
number of life-years saved

• This is an ethically charged and sensitive domain

• Our aim was to inform this discussion rather than draw firm conclusions on strategies



Hospital ICU triage and patient outcomes



Triage strategies considered
• Baseline

‒ No triage, first-come first-served

• Cut-off
‒ Patients above an age threshold are not permitted access

• Tolerance
‒ Patients above an age threshold are only permitted access if there are n>1 beds 

available at the time of demand

• Interrupt
‒ All patients admitted (if available beds) but any of those above age threshold are 

discharged early upon arrival of someone below the age threshold who cannot 
otherwise be admitted



Simulation approach

• Adapted our previously developed discrete event simulation engine 
(open-source, R based)

• Considered the IC bed base of a hypothetical hospital (20 IC beds)

• Outcome measures: lives saved and life-years saved

• Ensured demand is sufficient to stress the IC bed base



Inputs: arrivals requiring IC

• Investigated three demand scenarios

• Demand trajectories produced by 
locally developed ‘SEIR’ model

• This model had been in use for weekly 
COVID-19 projections in the Bristol 
healthcare system



Inputs: other parameters

Patient group Demand 
proportions1

Probability of death if 
admission declined or 

interrupted3

Probability of death 
within intensive care1

Life-years 
remaining2

Age 16 to 39 0.080 0.990 0.152 54.3
Age 40 to 49 0.136 0.990 0.223 38.0
Age 50 to 59 0.276 0.990 0.345 28.8
Age 60 to 69 0.294 0.990 0.482 20.3
Age 70 to 79 0.183 0.990 0.605 12.7
Age 80 plus 0.031 0.990 0.601 4.9

Admission 
outcome1

Distribution Parameters Fitted quartiles (empirical)
Shape (α) Rate (β) First Second Third

Survived Gamma 0.8904 0.0477 4.7 (5) 12.3 (12) 25.9 (26)
Died Gamma 1.5488 0.1331 4.8 (5) 9.3 (9) 15.9 (16)

• Calibration through national data1,2 and assumptions3
• National data: ICNARC report 26th June 2020, n = 9505; Office for National 

Statistics. National life tables (2020)



Results: headlines 

§ Cut-off triage strategy
‒ negligible effect on deaths but reduces life-years lost by up to 8.4% (95% CI: 

2.6% to 18.7%)
§ Tolerance triage strategy

• Slightly better results to the previous one but it does restrict the number of 
patients admitted to intensive care

§ Interrupt triage strategy
• Best performing strategy
• life-years lost can be reduced by 11.7% (2.8% to 25.8%)
• any triage benefit is reduced the higher the age threshold is set at
• triage benefit is also reduced as demand or bed base increases



Summary

• Admitting all patients while reserving the right for early discharge can 
lead to reduced aggregate losses in lives and life-years

• This makes more effective use of bed availability when compared to 
other triage methods with more patients at least having the chance to 
benefit from intensive care

• Very complex ethical considerations, see for example:

• White & Lo, 2020 https://doi.org/10.1001/jama.2020.5046

• Vergano et al, 2020 https://doi.org/10.1186/s13054-020-02891-w

https://doi.org/10.1001/jama.2020.5046
https://doi.org/10.1186/s13054-020-02891-w


Existing principles and triage criteria for 
resource rationing

§ Existing triage guidelines determine patient priority based on several 
attributes, including the illness severity and the near-term prognosis after 
discharge. They focus on individual patients at the time of admission. They 
do not consider the dynamic illness trajectory of individual patients over the 
duration of treatment in ICU.

§ Further, they ignore the overall mixture of current patient profiles and the 
uncertainty in the number of patients who become critical ill over time. 



Existing principles and triage criteria for 
resource rationing

§ “Maximising the benefits produced by scarce resources, 
treating people equally, promoting and rewarding 
instrumental value, and giving priority to the worst off.” 
However, very few policies adopt and operationalise all of 
these values simultaneously, resulting in suboptimal 
policies that undermine the principle of fairness in 
resource rationing



The Problem Setting

§ When a seriously-ill Covid-19 patient arrives for intensive 
care, all ICU beds are fully occupied.
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?

Rejection (status 
quo)

Admission and earlier 
discharge of an existing 

patient (Interrupt Strategy)

k, l



Our approach
§ The modelling of the problem as a discrete MDP 
§ Data input from NHS to show patient progression during their stay 

in ICU
§ Applying decomposition to derive index policies analytically
§ Simulation study to evaluating performance
§ Open dialogues and questionnaires with health professionals for 

inputs to the model as well as disseminating findings and 
generating impact 

26



The model

Discrete Markov Decision Process
§ Time epoch: we consider a finite time horizon T that is discretised into small intervals indexed by t;

§ State: The number of patients of each category k and severity level l in ICU. The state space is

§ Actions: Admit/reject a new patient; status quo/discharge a current patient.

§ One step transition probability from x to x’ depends on the arrival e and the 
action a



The model
§ One step cost:

§ Policy: Our objective is to find such a policy that minimises the total cost (i.e., expected life-years lost) 
over time horizon T.



Decomposition

§ Decomposed into a single patient problem.
Suppose that at each patient arrival, not only must a decision made whether to admit or not, but also the severity 
level at which the patient will be discharged. If the patient arrival is at level l, then the chosen severity level upon 
discharge (m) is restricted to the range 0<= m< l.

Underlying assumptions:
Generally speaking, ICU stay will result in improved condition;
Patients are only discharged after their condition has improved

?

Discharge  at 
level 0

Discharge  at 
level 1

Discharge  at 
level m

Discharge  at 
level l-1



Remarks
§ Bed usage rate W is introduced in deriving index policy. Now the total 

number of beds in ICU are relaxed. W have two sided values: system value 
and shadow value

§ It is relatively straightforward to show when system W increases, index 
policy for triage are more likely to reject a new patient. When system W=0, 
no patient shall be earlier discharged before their time.

§ The maximum shadow W for admitting a single patient in a specific category 
and severity level shall be determined by the relative benefit obtained from 
her ICU stay as well as her length of stay.



Hospital Data : Descriptive Summary

Two intensive care units at UHBW NHS trusts 17/03/2020 to 
24/12/2021

First Mode of Ventilation after
Admission

Age n Proportion LoS Mortality SuppO2+RA NIMV IMV

60+ 122 45% 11 48% 19% 54% 27%

under 60 151 55% 12 19% 22% 44% 34%



A Markov Chain Model for tracking 
Covid-19 Patient Severity at ICU

§ We use the type of breathing support provided for patients for tracking 
the progress of patients’ disease while in the ICU.
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Markov Chain Model



Markov Chain Probabilities



Patient outcomes and mortalities
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Probability elicitation of patient mortality

§ The mortalities and length of stay of a single patient if admitted 
can be calculated from ICU patients Markov Chain matrix.

§ However, the mortalities of a patient rejected/earlier discharged 
by ICU are rarely reported in either literature or practice.

§ Relative risk RR:  a ratio of mortalities of admission to mortalities 
of rejection to ICU RR = ψ$%/ ϕ$%

§ Estimate the value RR via questionnaire among intensive care 
physicians. 



The Questionnaire

§ Scenario one:
“A COVID patient has been referred to ICU from the medical assessment unit. When relevant patient characteristics 
have been considered (e.g. age, sex, SOFA, APACHE-II, type of admission etc. . . ), their predicted mortality in ICU is 
0.5 if admitted.”
Physicians were asked If the patient was denied admission to ICU for some reason (e.g. due to full capacity), what 
the best estimate of their new mortality probability is in the order of mostly likely, optimistically and pessimistically.

§ Scenario Two:
“The same COVID patient has been admitted and is now receiving ICU treatment. Their within-ICU mortality 
probability is now predicted to be 0.4 if continuously treated in ICU.”
Physicians were asked If the patient was prematurely discharged for some reason (e.g., the better prognoses of 
other admitted/waiting patients), what the best estimate of their new mortality probability is in the order of mostly 
likely, optimistically and pessimistically.



The results of the questionnaire
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Summary

§ The modelling approach and decomposition method have operationalised 
the first three values underlying fairness principle. The numerical results will 
evidence how the index policy help with those worst off.

§ Our index policy developed is forward looking in nature. 
§ The patient data from UHBW is in line with national data from ICNARC. 
§ The Markov chain calibrated from the hourly ICU data provides a reasonably 

accurate model of disease progression.
§ Relative Risk (RR) derived from questionnaire among ICU consultants 

provides a base to assign patient mortalities of rejection and of earlier 
discharge.



Alternative Triage Strategies
First Come First Serve (FCFS)

• The baseline

Interrupt
• All patients admitted if there are available beds. 
• Otherwise, any of those further below the threshold is discharged upon arrival of someone closer to the threshold. The 

threshold is defined as the extra life-years saved if being admitted compared to being denied. 

Index policy
• Calculate a numerical score (i.e., an index) for each patient, which considers the penalty incurred for early discharges.
• All patients admitted if there are available beds. 
• Otherwise, 

• any of those in the ICU with the highest index is discharged upon arrival of someone with a lower index. 
• If the arriving patient has the highest index, they are denied admission. 



Simulation Study – The Settings
catetory l_from l_to probability

1 1 0 0.0133

1 1 1 0.8729

1 1 2 0.1138

1 2 1 0.0798

1 2 2 0.9027

1 2 3 0.0175

1 3 2 0.0146

1 3 3 0.9837

1 3 4 0.0017

catetory l_from l_to probability

2 1 0 0.0095

2 1 1 0.8961

2 1 2 0.0944

2 2 1 0.0561

2 2 2 0.9231

2 2 3 0.0208

2 3 2 0.0143

2 3 3 0.9823

2 3 4 0.0034

Patient
Category

Patient
Level

Life-years 
remaining

Demand 
proportion

under 60 SuportO2+RA 35.5 0.0911
under 60 NIMV 35.5 0.2597
under 60 IMV 35.5 0.1282

60+ SuportO2+RA 16.6 0.1153
60+ NIMV 16.6 0.2307
60+ IMV 16.6 0.175

Total expected arrivals: 185 over 365 days
Number of ICU beds: 6
Penalty for early discharges: 0.5
Simulation replications: 500



The Key Results

RR=0.4 FCFS Interrupt Index
Total death 101 99 103

Below 60 31 26 24
60+ 70 73 79

Total admission 90 153 126
Below 60 43 81 70

60+ 47 73 56
Total early discharges 0 64 35

Below 60 0 27 6
60+ 0 37 29

early dischasrge rate 
(overall) 0% 42% 28%

Life-years lost 2263 2137 2178

RR=0.63 FCFS Interrupt Index
Total death 81 77 78

Below 60 23 23 22
60+ 58 54 56

Total admission 90 140 115
Below 60 43 58 53

60+ 47 82 62
Total early discharges 0 54 28

Below 60 0 30 16
60+ 0 24 12

early dischasrge rate 
(overall) 0% 39% 24%

Life-years lost 1766 1710 1718



Bed Occupancy FCFS vs Index (RR=0.63)



Simulation scenarios

Scenario Demand profile Capacity 
(intensive care beds)

Mean length of stay (days)

1 No isolation 45 8.07
2 Isolation 45 8.07
3 Isolation 76 8.07
4 Isolation 100 8.07
5 Isolation 45 6.05
6 Isolation 45 10.09
7 Isolation (flattened) 45 8.07
8 Isolation (flattened) 76 8.07
9 Isolation (flattened) 100 8.07

10 Isolation (flattened) 100 6.05

baseline = 45 beds
first surge = 76 beds

second surge 100 beds

baseline = 8.07 days
-25% = 6.05 days

+25% = 10.09 days



Bed Occupancy FCFS vs Index (RR=0.63)
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The Takeaways

§ FCFS leads to highest lives and/or life-years lost
§ Interrupt strategy leads to the least losses, but at the expense of a lot of early discharges
§ Index policy strikes a balance in earlier discharges between Interrupt and FCFS, fine-tuned 

by the early discharge penalty. 
– If the early discharge penalty = Very large, index becomes FCFS
– If the early discharge penalty = 0, index becomes close to interrupt 

§ AS RR decreases (i.e., risk increases by not admitting patients to ICU), more younger 
deaths can be avoided by applying index policy.

§ Bed occupancy between FCFS and Index
– Index policy leads to higher bed occupancy over time
– More beds are occupied by higher severity level patients under index policy



Thank you ! 
And happy to take any questions!


