Staff profile
Overview
https://apps.dur.ac.uk/biography/image/402
Affiliation | Telephone |
---|---|
Professor in the Department of Physics | +44 (0) 191 33 43567 |
Professor in the Institute for Computational Cosmology | +44 (0) 191 33 43567 |
Biography
Academic Career
- 10/2016-06/2019: Reader, Department of Physics, Durham University
- 10/2014-09/2016: Senior Lecturer, Department of Physics, Durham University
- 10/2011-09/2014: Lecturer in Theoretical Astrophysics, Department of Physics, Durham University
- 10/2011-09/2014: Royal Astronomical Society Research Fellow, Institute for Computational Comology, Durham University
- 10/2009-09/2011: Research Fellow in Applied Mathematics (JRF), Queens' College, University of Cambridge
- 10/2009-09/2011: Research Associate, Department of Applied Maths & Theoretical Physics, University of Cambridge
- 10/2009-09/2011: Research Associate, Kavli Institute for Cosmology Cambridge, Institute of Astronomy, University fo Cambridge
Education
- 2006-2009: PhD in Applied Mathematics, Queens' College, University of Cambridge, the United Kingdom
- 2004-2006: MPhil in Physics, The Chinese University of Hong Kong, Hong Kong
- 2000-2004: BSc in Physics, Tsinghua University, Beijing, China
Teaching and Mentoring
- Lecturer for Level 3/4 course "Cosmology"
- Mentor for the University College
- Adviser for Level 1 Physics & Natural Science students
- Supervisor for Level 4 project (Physics)
Research interests
- accelerated cosmic expansion and cosmological tests of gravity
- large scale structure
- weak gravitational lensing
- numerical simulations
- cosmic voids
- numerical relativity
- reconstuction and BAO
Publications
Authored book
- Simulating Large-Scale Structure for Models of Cosmic AccelerationLi, B. (n.d.). Simulating Large-Scale Structure for Models of Cosmic Acceleration [Contracted by publisher]. IOP Publishing.
Conference Paper
- Void dynamicsPadilla, N., Paz, D., Lares, M., Ceccarelli, L., Garcia Lambas, D., Cai, Y., & Li, B. (2015). Void dynamics. Presented at The Zeldovich Universe, Tallinn, Estonia.
- Testing gravity using void profilesCai, Y., Padilla, N., & Li, B. (2015). Testing gravity using void profiles. Presented at The Zeldovich Universe, Tallinn, Estonia.
Journal Article
- Negative neutrino masses as a mirage of dark energyElbers, W., Frenk, C. S., Jenkins, A., Li, B., & Pascoli, S. (2025). Negative neutrino masses as a mirage of dark energy. Physical Review D, 111(6), Article 063534. https://doi.org/10.1103/PhysRevD.111.063534
- The FLAMINGO project: the coupling between baryonic feedback and cosmology in light of the S8 tensionElbers, W., Frenk, C. S., Jenkins, A., Li, B., Helly, J. C., Kugel, R., Schaller, M., Schaye, J., Braspenning, J., Kwan, J., McCarthy, I. G., Salcido, J., van Daalen, M. P., Vandenbroucke, B., & Pascoli, S. (2025). The FLAMINGO project: the coupling between baryonic feedback and cosmology in light of the S8 tension. Monthly Notices of the Royal Astronomical Society, 537(2), 2160-2178. https://doi.org/10.1093/mnras/staf093
- ExaGRyPE: Numerical general relativity solvers based upon the hyperbolic PDEs solver engine ExaHyPEZhang, H., Li, B., Weinzierl, T., & Barrera-Hinojosa, C. (2025). ExaGRyPE: Numerical general relativity solvers based upon the hyperbolic PDEs solver engine ExaHyPE. Computer Physics Communications, 307, Article 109435. https://doi.org/10.1016/j.cpc.2024.109435
- Emulation of f(R) modified gravity from ΛCDM using conditional GANsGondhalekar, Y., Bose, S., Li, B., & Cuesta-Lazaro, C. (2025). Emulation of f(R) modified gravity from ΛCDM using conditional GANs. Monthly Notices of the Royal Astronomical Society, 536(2), 1408-1427. https://doi.org/10.1093/mnras/stae2687
- Matter power spectra in modified gravity: a comparative study of approximations and N-body simulationsBose, B., Gupta, A. S., Fiorini, B., Brando, G., Hassani, F., Baker, T., Lombriser, L., Li, B., Ruan, C., Hernández-Aguayo, C., Atayde, L., & Frusciante, N. (2025). Matter power spectra in modified gravity: a comparative study of approximations and N-body simulations. Monthly Notices of the Royal Astronomical Society, 536(1), 664-683. https://doi.org/10.1093/mnras/stae2562
- Galaxy clustering in modified gravity from full-physics simulations – I. Two-point correlation functionsCollier, M., Bose, S., & Li, B. (2024). Galaxy clustering in modified gravity from full-physics simulations – I. Two-point correlation functions. Monthly Notices of the Royal Astronomical Society, 534(3), 2204-2220. https://doi.org/10.1093/mnras/stae2219
- Modelling the redshift-space cluster–galaxy correlation function on Mpc scales with emulation of the pairwise velocity distributionRobertson, A., Huff, E., Markovič, K., & Li, B. (2024). Modelling the redshift-space cluster–galaxy correlation function on Mpc scales with emulation of the pairwise velocity distribution. Monthly Notices of the Royal Astronomical Society, 533(4), 4081-4103. https://doi.org/10.1093/mnras/stae1980
- Constraining modified gravity with weak-lensing peaksDavies, C. T., Harnois-Déraps, J., Li, B., Giblin, B., Hernández-Aguayo, C., & Paillas, E. (2024). Constraining modified gravity with weak-lensing peaks. Monthly Notices of the Royal Astronomical Society, 533(3), 3546-3569. https://doi.org/10.1093/mnras/stae1966
- Galaxy evolution in modified gravity simulations: using galaxy properties to constrain our gravitational modelPallero, D., Gómez, F. A., Padilla, N. D., Jaffé, Y. L., Baugh, C. M., Li, B., Hernández-Aguayo, C., & Arnold, C. (2024). Galaxy evolution in modified gravity simulations: using galaxy properties to constrain our gravitational model. Monthly Notices of the Royal Astronomical Society, 533(3), 3344-3364. https://doi.org/10.1093/mnras/stae2002
- Estimation of line-of-sight velocities of individual galaxies using neural networks – I. Modelling redshift–space distortions at large scalesChen, H., Wang, J., Mao, T., Ma, J., Meng, Y., Li, B., Cai, Y.-C., Neyrinck, M., Falck, B., & Szalay, A. S. (2024). Estimation of line-of-sight velocities of individual galaxies using neural networks – I. Modelling redshift–space distortions at large scales. Monthly Notices of the Royal Astronomical Society, 532(4), 3947-3960. https://doi.org/10.1093/mnras/stae1682
- Nonlinear power spectrum and forecasts for a generalized cubic covariant GalileonAtayde, L., Frusciante, N., Bose, B., Casas, S., & Li, B. (2024). Nonlinear power spectrum and forecasts for a generalized cubic covariant Galileon. Physical Review D, 110(2), Article 024082. https://doi.org/10.1103/physrevd.110.024082
- The Uchuu-glam BOSS and eBOSS LRG lightcones: exploring clustering and covariance errorsEreza, J., Prada, F., Klypin, A., Ishiyama, T., Smith, A., Baugh, C. M., Li, B., Hernández-Aguayo, C., & Ruedas, J. (2024). The Uchuu-glam BOSS and eBOSS LRG lightcones: exploring clustering and covariance errors. Monthly Notices of the Royal Astronomical Society, 532(2), 1659-1682. https://doi.org/10.1093/mnras/stae1543
- Minkowski functionals of large-scale structure as a probe of modified gravityJiang, A., Liu, W., Fang, W., Li, B., Barrera-Hinojosa, C., & Zhang, Y. (2024). Minkowski functionals of large-scale structure as a probe of modified gravity. Physical Review D, 109(8), Article 083537. https://doi.org/10.1103/physrevd.109.083537
- fkPT: constraining scale-dependent modified gravity with the full-shape galaxy power spectrumRodriguez-Meza, M. A., Aviles, A., Noriega, H. E., Ruan, C.-Z., Li, B., Vargas-Magaña, M., & Cervantes-Cota, J. L. (2024). fkPT: constraining scale-dependent modified gravity with the full-shape galaxy power spectrum. Journal of Cosmology and Astroparticle Physics, 2024(03), Article 049. https://doi.org/10.1088/1475-7516/2024/03/049
- An emulator-based halo model in modified gravity – I. The halo concentration–mass relation and density profileRuan, C.-Z., Cuesta-Lazaro, C., Eggemeier, A., Li, B., Baugh, C. M., Arnold, C., Bose, S., Hernández-Aguayo, C., Zarrouk, P., & Davies, C. T. (2024). An emulator-based halo model in modified gravity – I. The halo concentration–mass relation and density profile. Monthly Notices of the Royal Astronomical Society, 527(2), 2490–2507. https://doi.org/10.1093/mnras/stad3021
- The e-MANTIS emulator: fast predictions of the non-linear matter power spectrum in f(R)CDM cosmologySáez-Casares, I., Rasera, Y., & Li, B. (2024). The e-MANTIS emulator: fast predictions of the non-linear matter power spectrum in f(R)CDM cosmology. Monthly Notices of the Royal Astronomical Society, 527(3), 7242-7262. https://doi.org/10.1093/mnras/stad3343
- Machine learning and structure formation in modified gravityBetts, J. C., van de Bruck, C., Arnold, C., & Li, B. (2023). Machine learning and structure formation in modified gravity. Monthly Notices of the Royal Astronomical Society, 526(3), 4148–4156. https://doi.org/10.1093/mnras/stad2915
- MGLENS: Modified gravity weak lensing simulations for emulation-based cosmological inferenceHarnois-Déraps, J., Hernandez-Aguayo, C., Cuesta-Lazaro, C., Arnold, C., Li, B., Davies, C. T., & Cai, Y.-C. (2023). MGLENS: Modified gravity weak lensing simulations for emulation-based cosmological inference. Monthly Notices of the Royal Astronomical Society, 525(4), 6336–6358. https://doi.org/10.1093/mnras/stad2700
- Galaxy clustering from the bottom up: A Streaming Model emulator ICuesta-Lazaro, cueCarolina, Nishimichi, T., Kobayashi, Y., Ruan, C.-Z., Eggemeier, A., Miyatake, H., Takada, M., Yoshida, N., Zarrouk, P., Baugh, C. M., Bose, S., & Li, B. (2023). Galaxy clustering from the bottom up: A Streaming Model emulator I. Monthly Notices of the Royal Astronomical Society, 523(3), 3219–3238. https://doi.org/10.1093/mnras/stad1207
- Where shadows lie: reconstruction of anisotropies in the neutrino skyElbers, W., Frenk, C. S., Jenkins, A., Li, B., Pascoli, S., Jasche, J., Lavaux, G., & Springel, V. (2023). Where shadows lie: reconstruction of anisotropies in the neutrino sky. Journal of Cosmology and Astroparticle Physics, 2023(10), Article 010. https://doi.org/10.1088/1475-7516/2023/10/010
- FORGE - the f(R) gravity cosmic emulator project I: Introduction and matter power spectrum emulatorArnold, C., Li, B., Giblin, B., Harnois-Déraps, J., & Cai, Y.-C. (2022). FORGE - the f(R) gravity cosmic emulator project I: Introduction and matter power spectrum emulator. Monthly Notices of Royal Astronomical Society, 515(3), 4161-4175. https://doi.org/10.1093/mnras/stac1091
- Spherical accretion of collisional gas in modified gravity I: self-similar solutions and a new cosmological hydrodynamical codeZhang, H., Weinzierl, T., Schulz, H., & Li, B. (2022). Spherical accretion of collisional gas in modified gravity I: self-similar solutions and a new cosmological hydrodynamical code. Monthly Notices of the Royal Astronomical Society, 515(2), 2464-2482. https://doi.org/10.1093/mnras/stac1991
- Non-linear reconstruction of features in the primordial power spectrum from large-scale structureLi, Y., Zhu, H.-M., & Li, B. (2022). Non-linear reconstruction of features in the primordial power spectrum from large-scale structure. Monthly Notices of the Royal Astronomical Society, 514(3), 4363-4378. https://doi.org/10.1093/mnras/stac1544
- A general framework to test gravity using galaxy clusters VI: Realistic galaxy formation simulations to study clusters in modified gravityMitchell, M. A., Arnold, C., & Li, B. (2022). A general framework to test gravity using galaxy clusters VI: Realistic galaxy formation simulations to study clusters in modified gravity. Monthly Notices of Royal Astronomical Society, 514(3), 3349-3365. https://doi.org/10.1093/mnras/stac1528
- Cosmological forecasts with the clustering of weak lensing peaksDavies, C. T., Cautun, M., Giblin, B., Li, B., Harnois-Déraps, J., & Cai, Y.-C. (2022). Cosmological forecasts with the clustering of weak lensing peaks. Monthly Notices of Royal Astronomical Society, 513(4), 4729-4746. https://doi.org/10.1093/mnras/stac1204
- Towards an accurate model of small-scale redshift-space distortions in modified gravityRuan, C.-Z., Cuesta-Lazaro, C., Eggemeier, A., Hernández-Aguayo, C., Baugh, C. M., Li, B., & Prada, F. (2022). Towards an accurate model of small-scale redshift-space distortions in modified gravity. Monthly Notices of Royal Astronomical Society, 514(1), 440-459. https://doi.org/10.1093/mnras/stac1345
- The matter density PDF for modified gravity and dark energy with Large Deviations TheoryCataneo, M., Uhlemann, C., Arnold, C., Gough, A., Li, B., & Heymans, C. (2022). The matter density PDF for modified gravity and dark energy with Large Deviations Theory. Monthly Notices of Royal Astronomical Society, 513(2), 1623-1641. https://doi.org/10.1093/mnras/stac904
- Looking for a twist: probing the cosmological gravitomagnetic effect via weak lensing-kSZ cross correlationsBarrera-Hinojosa, C., Li, B., & Cai, Y.-C. (2022). Looking for a twist: probing the cosmological gravitomagnetic effect via weak lensing-kSZ cross correlations. Monthly Notices of Royal Astronomical Society, 510(3), 3589-3604. https://doi.org/10.1093/mnras/stab3657
- Fast full N-body simulations of generic modified gravity: conformal coupling modelsRuan, C.-Z., Hernández-Aguayo, C., Li, B., Arnold, C., Baugh, C. M., Klypin, A., & Prada, F. (2022). Fast full N-body simulations of generic modified gravity: conformal coupling models. Journal of Cosmology and Astroparticle Physics, 2022(5), Article 18. https://doi.org/10.1088/1475-7516/2022/05/018
- Fast full N-body simulations of generic modified gravity: derivative coupling modelsHernández-Aguayo, C., Ruan, C.-Z., Li, B., Arnold, C., Baugh, C. M., Klypin, A., & Prada, F. (2022). Fast full N-body simulations of generic modified gravity: derivative coupling models. Journal of Cosmology and Astroparticle Physics, 2022, Article 048. https://doi.org/10.1088/1475-7516/2022/01/048
- Higher order initial conditions with massive neutrinosElbers, W., Frenk, C. S., Jenkins, A., Li, B., & Pascoli, S. (2022). Higher order initial conditions with massive neutrinos. Monthly Notices of the Royal Astronomical Society, 516(3). https://doi.org/10.1093/mnras/stac2365
- A general framework to test gravity using galaxy clusters IV: cluster and halo properties in DGP gravityMitchell, M. A., Hernández-Aguayo, C., Arnold, C., & Li, B. (2021). A general framework to test gravity using galaxy clusters IV: cluster and halo properties in DGP gravity. Monthly Notices of the Royal Astronomical Society, 508(3), 4140-4156. https://doi.org/10.1093/mnras/stab2817
- Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirementsAlam, S., Arnold, C., Aviles, A., Bean, R., Cai, Y.-C., Cautun, M., Cervantes-Cota, J. L., Cuesta-Lazaro, C., Chandrachani Devi, N., Eggemeier, A., Fromenteau, S., Gonzalez-Morales, A. X., Halenka, V., He, J.- hua, Hellwing, W. A., Hernandez-Aguayo, C., Ishak, M., Koyama, K., Li, B., … Zheng, Y. (2021). Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements. Journal of Cosmology and Astroparticle Physics, 11, Article 050. https://doi.org/10.1088/1475-7516/2021/11/050
- Constraining cosmology with weak lensing voidsDavies, C. T., Cautun, M., Giblin, B., Li, B., Harnois-Déraps, J., & Cai, Y.-C. (2021). Constraining cosmology with weak lensing voids. Monthly Notices of the Royal Astronomical Society, 507(2), 2267-2282. https://doi.org/10.1093/mnras/stab2251
- An optimal non-linear method for simulating relic neutrinosElbers, W., Frenk, C. S., Jenkins, A., Li, B., & Pascoli, S. (2021). An optimal non-linear method for simulating relic neutrinos. Monthly Notices of the Royal Astronomical Society, 507(2), 2614-2631. https://doi.org/10.1093/mnras/stab2260
- Fast generation of mock galaxy catalogues in modified gravity models with COLAFiorini, B., Koyama, K., Izard, A., Winther, H. A., Wright, B. S., & Li, B. (2021). Fast generation of mock galaxy catalogues in modified gravity models with COLA. Journal of Cosmology and Astroparticle Physics, 2021(09), Article 021. https://doi.org/10.1088/1475-7516/2021/09/021
- Proca-stinated cosmology. Part II. Matter, halo, and lensing statistics in the vector GalileonBecker, C., Eggemeier, A., Davies, C. T., & Li, B. (2021). Proca-stinated cosmology. Part II. Matter, halo, and lensing statistics in the vector Galileon. Journal of Cosmology and Astroparticle Physics, 2021(06), Article 014. https://doi.org/10.1088/1475-7516/2021/06/014
- Galaxy formation in the brane world I: overview and first resultsHernández-Aguayo, C., Arnold, C., Li, B., & Baugh, C. M. (2021). Galaxy formation in the brane world I: overview and first results. Monthly Notices of the Royal Astronomical Society, 503(3), 3867-3885. https://doi.org/10.1093/mnras/stab694
- Biased Tracer Reconstruction with Halo Mass InformationLiu, Y., Yu, Y., & Li, B. (2021). Biased Tracer Reconstruction with Halo Mass Information. Astrophysical Journal Supplement, 254(1), Article 4. https://doi.org/10.3847/1538-4365/abe868
- Baryon acoustic oscillations reconstruction using convolutional neural networksMao, T.-X., Wang, J., Li, B., Cai, Y.-C., Falck, B., Neyrinck, M., & Szalay, A. (2021). Baryon acoustic oscillations reconstruction using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 501(1), 1499-1510. https://doi.org/10.1093/mnras/staa3741
- Redshift space power spectrum beyond Einstein-de Sitter kernelsAviles, A., Valogiannis, G., Rodriguez-Meza, M. A., Cervantes-Cota, J. L., Li, B., & Bean, R. (2021). Redshift space power spectrum beyond Einstein-de Sitter kernels. Journal of Cosmology and Astroparticle Physics, 2021(04), Article 039. https://doi.org/10.1088/1475-7516/2021/04/039
- A general framework to test gravity using galaxy clusters – V. A self-consistent pipeline for unbiased constraints of f(R) gravityMitchell, M. A., Arnold, C., & Li, B. (2021). A general framework to test gravity using galaxy clusters – V. A self-consistent pipeline for unbiased constraints of f(R) gravity. Monthly Notices of the Royal Astronomical Society, 508(3), 4157-4174. https://doi.org/10.1093/mnras/stab2703
- Towards a non-Gaussian model of redshift space distortionsCuesta-Lazaro, C., Li, B., Eggemeier, A., Zarrouk, P., Baugh, C. M., Nishimichi, T., & Takada, M. (2020). Towards a non-Gaussian model of redshift space distortions. Monthly Notices of the Royal Astronomical Society, 498(1), 1175-1193. https://doi.org/10.1093/mnras/staa2249
- Iterative removal of redshift space distortions from galaxy clusteringWang, Y., Li, B., & Cautun, M. (2020). Iterative removal of redshift space distortions from galaxy clustering. Monthly Notices of the Royal Astronomical Society, 497(3), 3451-3471. https://doi.org/10.1093/mnras/staa2136
- Measuring the baryon acoustic oscillation peak position with different galaxy selectionsHernández-Aguayo, C., Cautun, M., Smith, A., Baugh, C. M., & Li, B. (2020). Measuring the baryon acoustic oscillation peak position with different galaxy selections. Monthly Notices of the Royal Astronomical Society, 494(3), 3120-3130. https://doi.org/10.1093/mnras/staa973
- Constraining structure formation using EDGESLeo, M., Theuns, T., Baugh, C. M., Li, B., & Pascoli, S. (2020). Constraining structure formation using EDGES. Journal of Cosmology and Astroparticle Physics, 2020(4), Article 004. https://doi.org/10.1088/1475-7516/2020/04/004
- GRAMSES: a new route to general relativistic $N$-body simulations in cosmology. Part II. Initial conditionsBarrera-Hinojosa, C., & Li, B. (2020). GRAMSES: a new route to general relativistic $N$-body simulations in cosmology. Part II. Initial conditions. Journal of Cosmology and Astroparticle Physics, 2020(4), Article 056. https://doi.org/10.1088/1475-7516/2020/04/056
- The accuracy of weak lensing simulationsHilbert, S., Barreira, A., Fabbian, G., Fosalba, P., Giocoli, C., Bose, S., Calabrese, M., Carbone, C., Davies, C. T., Li, B., Llineares, C., & Monaco, P. (2020). The accuracy of weak lensing simulations. Monthly Notices of the Royal Astronomical Society, 493(1), 305-319. https://doi.org/10.1093/mnras/staa281
- Nonlinear structure formation in Bound Dark EnergyAlmaraz, E., Li, B., & de la Macorra, A. (2020). Nonlinear structure formation in Bound Dark Energy. Journal of Cosmology and Astroparticle Physics, 2020, Article 016. https://doi.org/10.1088/1475-7516/2020/03/016
- GRAMSES: a new route to general relativistic N-body simulations in cosmology. Part I. Methodology and code descriptionBarrera-Hinojosa, C., & Li, B. (2020). GRAMSES: a new route to general relativistic N-body simulations in cosmology. Part I. Methodology and code description. Journal of Cosmology and Astroparticle Physics, 01, Article 007. https://doi.org/10.1088/1475-7516/2020/01/007
- Marked correlation functions in perturbation theoryAviles, A., Koyama, K., Cervantes-Cota, J. L., Winther, H. A., & Li, B. (2020). Marked correlation functions in perturbation theory. Journal of Cosmology and Astroparticle Physics, 01, Article 006. https://doi.org/10.1088/1475-7516/2020/01/006
- Proca-stinated cosmology. Part I. A N-body code for the vector GalileonBecker, C., Arnold, C., Li, B., & Heisenberg, L. (2020). Proca-stinated cosmology. Part I. A N-body code for the vector Galileon. Journal of Cosmology and Astroparticle Physics, 2020(10). https://doi.org/10.1088/1475-7516/2020/10/055
- Simulating galaxy formation in f(R) modified gravity: Matter, halo, and galaxy-statisticsArnold, C., & Li, B. (2019). Simulating galaxy formation in f(R) modified gravity: Matter, halo, and galaxy-statistics. Monthly Notices of the Royal Astronomical Society, 490(2), 2507-2520. https://doi.org/10.1093/mnras/stz2690
- Cosmological test of gravity using weak lensing voidsDavies, C. T., Cautun, M., & Li, B. (2019). Cosmological test of gravity using weak lensing voids. Monthly Notices of the Royal Astronomical Society, 490(4), 4907-4917. https://doi.org/10.1093/mnras/stz2933
- Emulators for the non-linear matter power spectrum beyond ΛCDMWinther, H., Casas, S., Baldi, M., Koyama, K., Li, B., Lombriser, L., & Zhao, G.-B. (2019). Emulators for the non-linear matter power spectrum beyond ΛCDM. Physical Review D, 100. https://doi.org/10.1103/physrevd.100.123540
- Screening maps of the local Universe I - MethodologyShao, S., Li, B., Cautun, M., Wang, H., & Wang, J. (2019). Screening maps of the local Universe I - Methodology. Monthly Notices of the Royal Astronomical Society, 489(4), 4912-4925. https://doi.org/10.1093/mnras/stz2450
- The self similarity of weak lensing peaksDavies, C. T., Cautun, M., & Li, B. (2019). The self similarity of weak lensing peaks. Monthly Notices of the Royal Astronomical Society, 488(4), 5833-5851. https://doi.org/10.1093/mnras/stz2157
- Realistic simulations of galaxy formation in f(R) modified gravityArnold, C., Leo, M., & Li, B. (2019). Realistic simulations of galaxy formation in f(R) modified gravity. Nature Astronomy, 3(10), 945-954. https://doi.org/10.1038/s41550-019-0823-y
- The Galaxy Halo Connection in Modified Gravity Cosmologies: Environment Dependence of Galaxy Luminosity functionDevi, N. C., Rodríguez-Puebla, A., Valenzuela, O., Avila-Reese, V., Hernández-Aguayo, C., & Li, B. (2019). The Galaxy Halo Connection in Modified Gravity Cosmologies: Environment Dependence of Galaxy Luminosity function. Monthly Notices of the Royal Astronomical Society, 488(1), 782-802. https://doi.org/10.1093/mnras/stz1664
- Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryonsRobertson, A., Harvey, D., Massey, R., Eke, V., McCarthy, I. G., Jauzac, M., Li, B., & Schaye, J. (2019). Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons. Monthly Notices of the Royal Astronomical Society, 488(3), 3646-3662. https://doi.org/10.1093/mnras/stz1815
- A high-redshift test of gravity using enhanced growth of small structures probed by the neutral hydrogen distributionLeo, M., Arnold, C., & Li, B. (2019). A high-redshift test of gravity using enhanced growth of small structures probed by the neutral hydrogen distribution. Physical Review D, 100(6), Article 064044. https://doi.org/10.1103/physrevd.100.064044
- Early dark energy constraints on growing neutrino quintessence cosmologiesNoble Chamings, F., Avgoustidis, A., Copeland, E. J., Green, A. M., & Li, B. (2019). Early dark energy constraints on growing neutrino quintessence cosmologies. Physical Review D, 100(4), Article 043525. https://doi.org/10.1103/physrevd.100.043525
- On the road to percent accuracy: nonlinear reaction of the matter power spectrum to dark energy and modified gravityCataneo, M., Lombriser, L., Heymans, C., Mead, A., Barreira, A., Bose, S., & Li, B. (2019). On the road to percent accuracy: nonlinear reaction of the matter power spectrum to dark energy and modified gravity. Monthly Notices of the Royal Astronomical Society, 488(2), 2121-2142. https://doi.org/10.1093/mnras/stz1836
- A general framework to test gravity using galaxy clusters II: A universal model for the halo concentration in f(R) gravityMitchell, M. A., Arnold, C., He, J.- hua, & Li, B. (2019). A general framework to test gravity using galaxy clusters II: A universal model for the halo concentration in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 487(1), 1410-1425. https://doi.org/10.1093/mnras/stz1389
- Large-scale redshift space distortions in modified gravity theoriesHernández-Aguayo, C., Hou, J., Li, B., Baugh, C., & Sánchez, A. G. (2019). Large-scale redshift space distortions in modified gravity theories. Monthly Notices of the Royal Astronomical Society, 485(2), 2194-2213. https://doi.org/10.1093/mnras/stz516
- Measurement of marked correlation functions in SDSS-III Baryon Oscillation Spectroscopic Survey using LOWZ galaxies in Data Release 12Satpathy, S., Croft, R. A., Ho, S., & Li, B. (2019). Measurement of marked correlation functions in SDSS-III Baryon Oscillation Spectroscopic Survey using LOWZ galaxies in Data Release 12. Monthly Notices of the Royal Astronomical Society, 484(2), 2148-2165. https://doi.org/10.1093/mnras/stz009
- The Santiago-Harvard-Edinburgh-Durham void comparison II: unveiling the Vainshtein screening using weak lensingPaillas, E., Cautun, M., Li, B., Cai, Y.-C., Padilla, N., Armijo, J., & Bose, S. (2019). The Santiago-Harvard-Edinburgh-Durham void comparison II: unveiling the Vainshtein screening using weak lensing. Monthly Notices of the Royal Astronomical Society, 484(1), 1149–1165. https://doi.org/10.1093/mnras/stz022
- Novel Probes Project: Tests of Gravity on Astrophysical ScalesBaker, T., Barreira, A., Desmond, H., Ferreira, P., Jain, B., Koyama, K., Li, B., Lombriser, L., Nicola, A., Sakstein, J., & Schmidt, F. (2019). Novel Probes Project: Tests of Gravity on Astrophysical Scales. Reviews of Modern Physics, 93, Article 015003. https://doi.org/10.1103/revmodphys.93.015003
- N-body simulations of structure formation in thermal inflation cosmologiesLeo, M., Baugh, C. M., Li, B., & Pascoli, S. (2018). N-body simulations of structure formation in thermal inflation cosmologies. Journal of Cosmology and Astroparticle Physics, 2018(12), Article 010. https://doi.org/10.1088/1475-7516/2018/12/010
- Approximation methods in modified gravity modelsLi, B. (2018). Approximation methods in modified gravity models. International Journal of Modern Physics D, 27(15), Article 1848004. https://doi.org/10.1142/s0218271818480048
- No evidence for modifications of gravity from galaxy motions on cosmological scalesHe, J.- hua, Guzzo, L., Li, B., & Baugh, C. M. (2018). No evidence for modifications of gravity from galaxy motions on cosmological scales. Nature Astronomy, 2(12), 967-972. https://doi.org/10.1038/s41550-018-0573-2
- Splashback in galaxy clusters as a probe of cosmic expansion and gravityAdhikari, S., Sakstein, J., Jain, B., Dalal, N., & Li, B. (2018). Splashback in galaxy clusters as a probe of cosmic expansion and gravity. Journal of Cosmology and Astroparticle Physics, 2018(11), Article 033. https://doi.org/10.1088/1475-7516/2018/11/033
- Constraining the time variation of Newton's constant G with gravitational-wave standard sirens and supernovaeZhao, W., Wright, B. S., & Li, B. (2018). Constraining the time variation of Newton’s constant G with gravitational-wave standard sirens and supernovae. Journal of Cosmology and Astroparticle Physics, 2018(10), Article 052. https://doi.org/10.1088/1475-7516/2018/10/052
- Weak lensing by voids in weak lensing mapsDavies, C. T., Cautun, M., & Li, B. (2018). Weak lensing by voids in weak lensing maps. Monthly Notices of the Royal Astronomical Society: Letters, 480(1), L101-L105. https://doi.org/10.1093/mnrasl/sly135
- Marked clustering statistics in f(R) gravity cosmologiesHernández-Aguayo, C., Baugh, C. M., & Li, B. (2018). Marked clustering statistics in f(R) gravity cosmologies. Monthly Notices of the Royal Astronomical Society, 479(1), 4824-4835. https://doi.org/10.1093/mnras/sty1822
- Nonlinear growth of structure in cosmologies with damped matter fluctuationsLeo, M., Baugh, C., Li, B., & Pascoli, S. (2018). Nonlinear growth of structure in cosmologies with damped matter fluctuations. Journal of Cosmology and Astroparticle Physics, 2018(08), Article 001. https://doi.org/10.1088/1475-7516/2018/08/001
- A general framework to test gravity using galaxy clusters I: Modelling the dynamical mass of haloes in f(R) gravityMitchell, M. A., He, J.- hua, Arnold, C., & Li, B. (2018). A general framework to test gravity using galaxy clusters I: Modelling the dynamical mass of haloes in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 477(1), 1133-1152. https://doi.org/10.1093/mnras/sty636
- Testing modified gravity using a marked correlation functionArmijo, J., Y.-c., C., Padilla, N., Li, B., & Peacock, J. (2018). Testing modified gravity using a marked correlation function. Monthly Notices of the Royal Astronomical Society, 478(3), 3627-3632. https://doi.org/10.1093/mnras/sty1335
- The Santiago-Harvard-Edinburgh-Durham void comparison I: SHEDding light on chameleon gravity testsCautun, M., Paillas, E., Cai, Y.-C., Bose, S., Armijo, J., Li, B., & Padilla, N. (2018). The Santiago-Harvard-Edinburgh-Durham void comparison I: SHEDding light on chameleon gravity tests. Monthly Notices of the Royal Astronomical Society, 476(3), 3195-3217. https://doi.org/10.1093/mnras/sty463
- Type Ia supernovae, standardizable candles, and gravityWright, B. S., & Li, B. (2018). Type Ia supernovae, standardizable candles, and gravity. Physical Review D, 97(8), Article 083505. https://doi.org/10.1103/physrevd.97.083505
- A new smooth-k space filter approach to calculate halo abundancesLeo, M., Baugh, C. M., Li, B., & Pascoli, S. (2018). A new smooth-k space filter approach to calculate halo abundances. Journal of Cosmology and Astroparticle Physics, 2018(04), Article 010. https://doi.org/10.1088/1475-7516/2018/04/010
- Reconstructing the baryon acoustic oscillations using biased tracersBirkin, J., Li, B., Cautun, M., & Shi, Y. (2018). Reconstructing the baryon acoustic oscillations using biased tracers. Monthly Notices of the Royal Astronomical Society, 483(4), 5267-5280. https://doi.org/10.1093/mnras/sty3365
- Galaxy–galaxy weak gravitational lensing in f(R) gravityLi, B., & Shirasaki, M. (2018). Galaxy–galaxy weak gravitational lensing in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 474(3), 3599-3614. https://doi.org/10.1093/mnras/stx3006
- Comparison of Einstein-Boltzmann solvers for testing general relativityBellini, E., Barreira, A., Frusciante, N., Hu, B., Peirone, S., Raveri, M., Zumalacárregui, M., Avilez-Lopez, A., Ballardini, M., Battye, R., Bolliet, B., Calabrese, E., Dirian, Y., Ferreira, P., Finelli, F., Huang, Z., Ivanov, M., Lesgourgues, J., Li, B., … Vernizzi, F. (2018). Comparison of Einstein-Boltzmann solvers for testing general relativity. Physical Review D, 97(2), Article 023520. https://doi.org/10.1103/physrevd.97.023520
- New method for initial density reconstructionShi, Y., Cautun, M., & Li, B. (2018). New method for initial density reconstruction. Physical Review D, 97(2), Article 023505. https://doi.org/10.1103/physrevd.97.023505
- Equivalence of cosmological observables in conformally related scalar tensor theoriesRondeau, F., & Li, B. (2017). Equivalence of cosmological observables in conformally related scalar tensor theories. Physical Review D, 96(12), Article 124009. https://doi.org/10.1103/physrevd.96.124009
- The effect of thermal velocities on structure formation in N-body simulations of warm dark matterLeo, M., Baugh, C., Li, B., & Pascoli, S. (2017). The effect of thermal velocities on structure formation in N-body simulations of warm dark matter. Journal of Cosmology and Astroparticle Physics, 2017(11), Article 017. https://doi.org/10.1088/1475-7516/2017/11/017
- Environmental screening of dark matter haloes in f(R) gravityShi, D., Li, B., & Han, J. (2017). Environmental screening of dark matter haloes in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 469(1), 705-715. https://doi.org/10.1093/mnras/stx865
- The Effect of Modified Gravity on the Odds of the Bound Violations of the Turn-around RadiiLee, J., & Li, B. (2017). The Effect of Modified Gravity on the Odds of the Bound Violations of the Turn-around Radii. Astrophysical Journal, 842(1), Article 2. https://doi.org/10.3847/1538-4357/aa706f
- New Probe of Departures from General Relativity Using Minkowski FunctionalsFang, W., Li, B., & Zhao, G.-B. (2017). New Probe of Departures from General Relativity Using Minkowski Functionals. Physical Review Letters, 118(18), Article 181301. https://doi.org/10.1103/physrevlett.118.181301
- The imprint of f(R) gravity on weak gravitational lensing II: Information content in cosmic shear statisticsShirasaki, M., Nishimichi, T., Li, B., & Higuchi, Y. (2017). The imprint of f(R) gravity on weak gravitational lensing II: Information content in cosmic shear statistics. Monthly Notices of the Royal Astronomical Society, 466(2), 2402-2417. https://doi.org/10.1093/mnras/stw3254
- Speeding up N-body simulations of modified gravity: Chameleon screening modelsBose, S., Li, B., Barreira, A., He, J.- hua, Hellwing, W. A., Koyama, K., Llinares, C., & Zhao, G.-B. (2017). Speeding up N-body simulations of modified gravity: Chameleon screening models. Journal of Cosmology and Astroparticle Physics, 2017(02), Article 050. https://doi.org/10.1088/1475-7516/2017/02/050
- Weak lensing by galaxy troughs with modified gravityBarreira, A., Bose, S., Li, B., & Llinares, C. (2017). Weak lensing by galaxy troughs with modified gravity. Journal of Cosmology and Astroparticle Physics, 2017(02), Article 031. https://doi.org/10.1088/1475-7516/2017/02/031
- Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulationsBose, S., Hellwing, W., Frenk, C., Jenkins, A., Lovell, M., Helly, J., Li, B., Gonzalez-Perez, V., & Gao, L. (2017). Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations. Monthly Notices of the Royal Astronomical Society, 464(4), 4520-4533. https://doi.org/10.1093/mnras/stw2686
- Cluster abundance in chameleon f(R) gravity I: toward an accurate halo mass function predictionCataneo, M., Rapetti, D., Lombriser, L., & Li, B. (2016). Cluster abundance in chameleon f(R) gravity I: toward an accurate halo mass function prediction. Journal of Cosmology and Astroparticle Physics, 2016(12), Article 024. https://doi.org/10.1088/1475-7516/2016/12/024
- Subhalo abundance matching in f(R) gravityHe, J.- hua, Li, B., & Baugh, C. M. (2016). Subhalo abundance matching in f(R) gravity. Physical Review Letters, 117(22), Article 221101. https://doi.org/10.1103/physrevlett.117.221101
- Can background cosmology hold the key for modified gravity tests?Ceron-Hurtado, J., He, J., & Li, B. (2016). Can background cosmology hold the key for modified gravity tests?. Physical Review D, 94(6), Article 064052. https://doi.org/10.1103/physrevd.94.064052
- Constraining f(R) Gravity Theory Using Weak Lensing Peak Statistics from the Canada-France-Hawaii-Telescope Lensing SurveyLiu, X., Li, B., Zhao, G., Chiu, M.-C., Fang, W., Pan, C., Wang, Q., Du, W., Yuan, S., Fu, L., & Fan, Z. (2016). Constraining f(R) Gravity Theory Using Weak Lensing Peak Statistics from the Canada-France-Hawaii-Telescope Lensing Survey. Physical Review Letters, 117(5), Article 051101. https://doi.org/10.1103/physrevlett.117.051101
- The Distribution of Dark and Luminous Matter in the Unique Galaxy Cluster Merger Abell 2146King, L., Clowe, D., Coleman, J., Russell, H., Santana, R., White, J., Canning, R., Deering, N., Fabian, A., Lee, B., Li, B., & McNamara, B. (2016). The Distribution of Dark and Luminous Matter in the Unique Galaxy Cluster Merger Abell 2146. Monthly Notices of the Royal Astronomical Society, 459(1), 517-527. https://doi.org/10.1093/mnras/stw507
- Accurate method of modeling cluster scaling relations in modified gravityJ.-h, H., & Li, B. (2016). Accurate method of modeling cluster scaling relations in modified gravity. Physical Review D, 93(12), Article 123512. https://doi.org/10.1103/physrevd.93.123512
- RAY-RAMSES: a code for ray tracing on the fly in N-body simulationsBarreira, A., Llinares, C., Bose, S., & Li, B. (2016). RAY-RAMSES: a code for ray tracing on the fly in N-body simulations. Journal of Cosmology and Astroparticle Physics, 2016(05), Article 001. https://doi.org/10.1088/1475-7516/2016/05/001
- Probing theories of gravity with phase space-inferred potentials of galaxy clustersStark, A., Miller, C., Kern, N., Gifford, D., Zhao, G.-B., Li, B., Koyama, K., & Nichol, R. (2016). Probing theories of gravity with phase space-inferred potentials of galaxy clusters. Physical Review D, 93(8), Article 084036. https://doi.org/10.1103/physrevd.93.084036
- Cluster gas fraction as a test of gravityLi, B., He, J., & Gao, L. (2016). Cluster gas fraction as a test of gravity. Monthly Notices of the Royal Astronomical Society, 456(1), 146-155. https://doi.org/10.1093/mnras/stv2650
- The Copernicus Complexio: Statistical Properties of Warm Dark Matter HaloesBose, S., Hellwing, W., Frenk, C., Jenkins, A., Lovell, M., Helly, J., & Li, B. (2016). The Copernicus Complexio: Statistical Properties of Warm Dark Matter Haloes. Monthly Notices of the Royal Astronomical Society, 455(1), 318-333. https://doi.org/10.1093/mnras/stv2294
- Modified gravity N-body code comparison projectWinther, H., Schmidt, F., Barreira, A., Arnold, C., Bose, S., Llinares, C., Baldi, M., Falck, B., Hellwing, W., Koyama, K., Li, B., Mota, D., Puchwein, E., Smith, R., & Zhao, G. (2015). Modified gravity N-body code comparison project. Monthly Notices of the Royal Astronomical Society, 454(4), 4208-4234. https://doi.org/10.1093/mnras/stv2253
- Galaxy cluster lensing masses in modified lensing potentialsBarreira, A., Li, B., Jennings, E., Merten, J., King, L., Baugh, C., & Pascoli, S. (2015). Galaxy cluster lensing masses in modified lensing potentials. Monthly Notices of the Royal Astronomical Society, 454(4), 4085-4102. https://doi.org/10.1093/mnras/stv2211
- Speeding up N-body simulations of modified gravity: Vainshtein screening modelsBarreira, A., Bose, S., & Li, B. (2015). Speeding up N-body simulations of modified gravity: Vainshtein screening models. Journal of Cosmology and Astroparticle Physics, 2015(12), Article 059. https://doi.org/10.1088/1475-7516/2015/12/059
- Effective dark matter power spectra in f(R) gravityHe, J., Li, B., & Hawken, A. (2015). Effective dark matter power spectra in f(R) gravity. Physical Review D, 92(10), Article 103508. https://doi.org/10.1103/physrevd.92.103508
- Rapid simulation rescaling from standard to modified gravity modelsMead, A., Peacock, J., Lombriser, L., & Li, B. (2015). Rapid simulation rescaling from standard to modified gravity models. Monthly Notices of the Royal Astronomical Society, 452(4), 4203-4221. https://doi.org/10.1093/mnras/stv1484
- Exploring the liminality: properties of haloes and subhaloes in borderline f(R) gravityShi, D., Li, B., Han, J., Gao, L., & Hellwing, W. (2015). Exploring the liminality: properties of haloes and subhaloes in borderline f(R) gravity. Monthly Notices of the Royal Astronomical Society, 452(3), 3179-3191. https://doi.org/10.1093/mnras/stv1549
- Distinguishing GR and f(R) gravity with the gravitational lensing Minkowski functionalsLing, C., Wang, Q., Li, R., Li, B., Wang, J., & Gao, L. (2015). Distinguishing GR and f(R) gravity with the gravitational lensing Minkowski functionals. Physical Review D, 92(6), Article 064024. https://doi.org/10.1103/physrevd.92.064024
- Using cosmic voids to distinguish f(R) gravity in future galaxy surveysZivick, P., Sutter, P., Wandelt, B., Li, B., & Lam, T. (2015). Using cosmic voids to distinguish f(R) gravity in future galaxy surveys. Monthly Notices of the Royal Astronomical Society, 451(4), 4215-4222. https://doi.org/10.1093/mnras/stv1209
- Effective dark matter halo catalog in f(R) gravityHe, J., Hawken, A., Li, B., & Guzzo, L. (2015). Effective dark matter halo catalog in f(R) gravity. Physical Review Letters, 115(7). https://doi.org/10.1103/physrevlett.115.071306
- Weak lensing by voids in modified lensing potentialsBarreira, A., Cautun, M., Li, B., Baugh, C., & Pascoli, S. (2015). Weak lensing by voids in modified lensing potentials. Journal of Cosmology and Astroparticle Physics, 2015(08). https://doi.org/10.1088/1475-7516/2015/08/028
- f(R) gravity on non-linear scales: The post-Friedmann expansion and the vector potentialThomas, D., Bruni, M., Koyama, K., Li, B., & Zhao, G. (2015). f(R) gravity on non-linear scales: The post-Friedmann expansion and the vector potential. Journal of Cosmology and Astroparticle Physics, 2015(07). https://doi.org/10.1088/1475-7516/2015/07/051
- Testing gravity using cosmic voidsCai, Y., Padilla, N., & Li, B. (2015). Testing gravity using cosmic voids. Monthly Notices of the Royal Astronomical Society, 451(1), 1036-1055. https://doi.org/10.1093/mnras/stv777
- Voids in Modified Gravity Reloaded: Eulerian Void AssignmentLam, T., Clampitt, J., Cai, Y., & Li, B. (2015). Voids in Modified Gravity Reloaded: Eulerian Void Assignment. Monthly Notices of the Royal Astronomical Society, 450(3), 3319-3330. https://doi.org/10.1093/mnras/stv797
- K-mouflage gravity models that pass Solar System and cosmological constraintsBarreira, A., Brax, P., Cless, S., Li, B., & Valageas, P. (2015). K-mouflage gravity models that pass Solar System and cosmological constraints. Physical Review D, 91(12), Article 123522. https://doi.org/10.1103/physrevd.91.123522
- Linear perturbations in K-mouflage cosmologies with massive neutrinosBarreira, A., Brax, P., Clesse, S., Li, B., & Valageas, P. (2015). Linear perturbations in K-mouflage cosmologies with massive neutrinos. Physical Review D, 91(6), Article 063528. https://doi.org/10.1103/physrevd.91.063528
- Chameleon f(R) gravity on the Virgo cluster scaleCorbett Moran, C., Teyssier, R., & Li, B. (2015). Chameleon f(R) gravity on the Virgo cluster scale. Monthly Notices of the Royal Astronomical Society, 448(1), 307-327. https://doi.org/10.1093/mnras/stu2757
- Testing the quasi-static approximation in f(R) gravity simulationsBose, S., Hellwing, W. A., & Li, B. (2015). Testing the quasi-static approximation in f(R) gravity simulations. Journal of Cosmology and Astroparticle Physics, 2015(02). https://doi.org/10.1088/1475-7516/2015/02/034
- Galaxy infall kinematics as a test of modified gravityZu, Y., Weinberg, D., Jennings, E., Li, B., & Wyman, M. (2014). Galaxy infall kinematics as a test of modified gravity. Monthly Notices of the Royal Astronomical Society, 445(2), 1885-1897. https://doi.org/10.1093/mnras/stu1739
- Revisiting the screening mechanism in f(R) gravityHe, J., Li, B., Hawken, A., & Granett, B. (2014). Revisiting the screening mechanism in f(R) gravity. Physical Review D, 90, Article 103505. https://doi.org/10.1103/physrevd.90.103505
- Nonlinear structure formation in Nonlocal GravityBarreira, A., Li, B., Hellwing, W., Baugh, C., & Pascoli, S. (2014). Nonlinear structure formation in Nonlocal Gravity. Journal of Cosmology and Astroparticle Physics, 2014(09), Article 031. https://doi.org/10.1088/1475-7516/2014/09/031
- The observational status of Galileon gravity after PlanckBarreira, A., Li, B., Baugh, C., & Pascoli, S. (2014). The observational status of Galileon gravity after Planck. Journal of Cosmology and Astroparticle Physics, 2014(08), Article 059. https://doi.org/10.1088/1475-7516/2014/08/059
- The Vainshtein mechanism in the cosmic webFalck, B., Koyama, K., Zhao, G., & Li, B. (2014). The Vainshtein mechanism in the cosmic web. Journal of Cosmology and Astroparticle Physics, 2014(07), Article 058. https://doi.org/10.1088/1475-7516/2014/07/058
- Modified gravity with massive neutrinos as a testable alternative cosmological modelBarreira, A., Li, B., Baugh, C., & Pascoli, S. (2014). Modified gravity with massive neutrinos as a testable alternative cosmological model. Physical Review D, 90(2), Article 023528. https://doi.org/10.1103/physrevd.90.023528
- Clear and measurable signature of modified gravity in the galaxy velocity fieldHellwing, W., Barreira, A., Frenk, C., Li, B., & Cole, S. (2014). Clear and measurable signature of modified gravity in the galaxy velocity field. Physical Review Letters, 112(22), Article 221102. https://doi.org/10.1103/physrevlett.112.221102
- Halo model and halo properties in Galileon gravity cosmologiesBarreira, A., Li, B., Hellwing, W., Lombriser, L., Baugh, C., & Pascoli, S. (2014). Halo model and halo properties in Galileon gravity cosmologies. Journal of Cosmology and Astroparticle Physics, 2014(04), Article 029. https://doi.org/10.1088/1475-7516/2014/04/029
- The Integrated Sachs-Wolfe effect in f(R) gravityCai, Y., Li, B., Cole, S., Frenk, C., & Neyrinck, M. (2014). The Integrated Sachs-Wolfe effect in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 439(3), 2978-2989. https://doi.org/10.1093/mnras/stu154
- Massive gravity wrapped in the cosmic webShim, J., Lee, J., & Li, B. (2014). Massive gravity wrapped in the cosmic web. Astrophysical Journal, 784(1), Article 84. https://doi.org/10.1088/0004-637x/784/1/84
- Halo modelling in chameleon theoriesLombriser, L., Koyama, K., & Li, B. (2014). Halo modelling in chameleon theories. Journal of Cosmology and Astroparticle Physics, 2014(03), Article 021. https://doi.org/10.1088/1475-7516/2014/03/021
- Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo biasBarreira, A., Li, B., Baugh, C., & Pascoli, S. (2013). Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias. Journal of Cosmology and Astroparticle Physics, 11(2013), Article 056. https://doi.org/10.1088/1475-7516/2013/11/056
- Revisiting the matter power spectra in f(R) gravityHe, J., Li, B., & Jing, Y. (2013). Revisiting the matter power spectra in f(R) gravity. Physical Review D, 88(10), Article 103507. https://doi.org/10.1103/physrevd.88.103507
- Simulating the quartic Galileon gravity model on adaptively refined meshesLi, B., Barreira, A., Baugh, C., Hellwing, W., Koyama, K., Pascoli, S., & Zhao, G. (2013). Simulating the quartic Galileon gravity model on adaptively refined meshes. Journal of Cosmology and Astroparticle Physics, 2013(11), Article 12. https://doi.org/10.1088/1475-7516/2013/11/012
- Hierarchical clustering in chameleon f(R) gravityHellwing, W., Li, B., Frenk, C., & Cole, S. (2013). Hierarchical clustering in chameleon f(R) gravity. Monthly Notices of the Royal Astronomical Society, 435(4), 2806-2821. https://doi.org/10.1093/mnras/stt1430
- Nonlinear structure formation in the cubic Galileon gravity modelBarreira, A., Li, B., Hellwing, W., Baugh, C., & Pascoli, S. (2013). Nonlinear structure formation in the cubic Galileon gravity model. Journal of Cosmology and Astroparticle Physics, 2013(10), Article 027. https://doi.org/10.1088/1475-7516/2013/10/027
- Testing gravity theories via transverse Doppler and gravitational redshifts in galaxy clustersZhao, H., Peacock, J., & Li, B. (2013). Testing gravity theories via transverse Doppler and gravitational redshifts in galaxy clusters. Physical Review D, 88(4), Article 043013. https://doi.org/10.1103/physrevd.88.043013
- Modeling halo mass functions in chameleon f(R) gravityLombriser, L., Li, B., Koyama, K., & Zhao, G. (2013). Modeling halo mass functions in chameleon f(R) gravity. Physical Review D, 87(12), Article 123511. https://doi.org/10.1103/physrevd.87.123511
- Exploring Vainshtein mechanism on adaptively refined meshesLi, B., Zhao, G., & Koyama, K. (2013). Exploring Vainshtein mechanism on adaptively refined meshes. Journal of Cosmology and Astroparticle Physics, 2013(05), Article 023. https://doi.org/10.1088/1475-7516/2013/05/023
- Voids in modified gravity: excursion set predictionsClampitt, J., Cai, Y.-C., & Li, B. (2013). Voids in modified gravity: excursion set predictions. Monthly Notices of the Royal Astronomical Society, 431(1), 749-766. https://doi.org/10.1093/mnras/stt219
- Parameter space in Galileon gravity modelsBarreira, A., Li, B., Sanchez, A., Baugh, C., & Pascoli, S. (2013). Parameter space in Galileon gravity models. Physical Review D, 87(10), Article 103511. https://doi.org/10.1103/physrevd.87.103511
- Systematic simulations of modified gravity: chameleon modelsBrax, P., Davis, A.-C., Li, B., Winther, H., & Zhao, G.-B. (2013). Systematic simulations of modified gravity: chameleon models. Journal of Cosmology and Astroparticle Physics, 2013(04), Article 029. https://doi.org/10.1088/1475-7516/2013/04/029
- Modified gravity spins up galactic halosLee, J., Zhao, G., Li, B., & Koyama, K. (2013). Modified gravity spins up galactic halos. Astrophysical Journal, 763(1), Article 28. https://doi.org/10.1088/0004-637x/763/1/28
- The non-linear matter and velocity power spectra in f(R) gravityLi, B., Hellwing, W., Koyama, K., Zhao, G., Jennings, E., & Baugh, C. (2013). The non-linear matter and velocity power spectra in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 428(1), 743-755. https://doi.org/10.1093/mnras/sts072
- Linear perturbations in Galileon gravity modelsBarreira, A., Li, B., Baugh, C., & Pascoli, S. (2012). Linear perturbations in Galileon gravity models. Physical Review D, 86(12), Article 124016. https://doi.org/10.1103/physrevd.86.124016
- Excursion set theory for modified gravity: correlated steps, mass functions and halo biasLam, T., & Li, B. (2012). Excursion set theory for modified gravity: correlated steps, mass functions and halo bias. Monthly Notices of the Royal Astronomical Society, 426(4), 3260-3270. https://doi.org/10.1111/j.1365-2966.2012.21746.x
- Systematic simulations of modified gravity: symmetron and dilaton modelsBrax, P., Davis, A.-C., Li, B., Winther, H., & Zhao, G.-B. (2012). Systematic simulations of modified gravity: symmetron and dilaton models. Journal of Cosmology and Astroparticle Physics, 2012(10), Article 002. https://doi.org/10.1088/1475-7516/2012/10/002
- Redshift-space distortions in f(R) gravityJennings, E., Baugh, C., Li, B., Zhao, G., & Koyama, K. (2012). Redshift-space distortions in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 425(3), 2128-2143. https://doi.org/10.1111/j.1365-2966.2012.21567.x
- Environment dependence of dark matter halos in symmetron modified gravityWinther, H., Mota, D., & Li, B. (2012). Environment dependence of dark matter halos in symmetron modified gravity. Astrophysical Journal, 756(2), Article 166. https://doi.org/10.1088/0004-637x/756/2/166
- Excursion set theory for modified gravity: Eulerian versus Lagrangian environmentsLi, B., & Lam, T. (2012). Excursion set theory for modified gravity: Eulerian versus Lagrangian environments. Monthly Notices of the Royal Astronomical Society, 425(1), 730-739. https://doi.org/10.1111/j.1365-2966.2012.21592.x
- Modified gravity tomographyBrax, P., Davis, A.-C., & Li, B. (2012). Modified gravity tomography. Physics Letters B, 715(1-3), 38-43. https://doi.org/10.1016/j.physletb.2012.08.002
- Unified description of screened modified gravityBrax, P., Davis, A.-C., Li, B., & Winther, H. (2012). Unified description of screened modified gravity. Physical Review D, 86(4), Article 044015. https://doi.org/10.1103/physrevd.86.044015
- Testing gravity on cosmological scalesLi, B. (2012). Testing gravity on cosmological scales. Astronomy and Geophysics, 53(4), 4.37-4.41. https://doi.org/10.1111/j.1468-4004.2012.53437.x
- Chameleon f(R) gravity in the virialized clusterLombriser, L., Koyama, K., Zhao, G., & Li, B. (2012). Chameleon f(R) gravity in the virialized cluster. Physical Review D, 85(12), Article 124054. https://doi.org/10.1103/physrevd.85.124054
- Halos and Voids in f(R) GravityLi, B., Zhao, G., & Koyama, K. (2012). Halos and Voids in f(R) Gravity. Monthly Notices of the Royal Astronomical Society, 421(4), 3481-3487. https://doi.org/10.1111/j.1365-2966.2012.20573.x
- An extended excursion set approach to structure formation in chameleon modelsLi, B., & Efstathiou, G. (2012). An extended excursion set approach to structure formation in chameleon models. Monthly Notices of the Royal Astronomical Society, 421(2), 1431-1442. https://doi.org/10.1111/j.1365-2966.2011.20404.x
- Structure formation in the symmetron modelDavis, A.-C., Li, B., Mota, D., & Winther, H. (2012). Structure formation in the symmetron model. Astrophysical Journal, 748(1), Article 61. https://doi.org/10.1088/0004-637x/748/1/61
- ECOSMOG: an Efficient COde for Simulating MOdified GravityLi, B., Zhao, G., Teyssier, R., & Koyama, K. (2012). ECOSMOG: an Efficient COde for Simulating MOdified Gravity. Journal of Cosmology and Astroparticle Physics, 2012(01), Article 051. https://doi.org/10.1088/1475-7516/2012/01/051
- Linear growth of structure in the symmetron modelBrax, P., van de Bruck, C., Davis, A.-C., Li, B., Schmauch, B., & Shaw, D. (2011). Linear growth of structure in the symmetron model. Physical Review D, 84, Article 123524. https://doi.org/10.1103/physrevd.84.123524
- Testing gravity using the environmental dependence of dark matter halosZhao, G., Li, B., & Koyama, K. (2011). Testing gravity using the environmental dependence of dark matter halos. Physical Review Letters, 107(7), Article 071303. https://doi.org/10.1103/physrevlett.107.071303
- An analytic ray-tracing algorithm for weak lensingLi, B., King, L., Zhao, G., & Zhao, H. (2011). An analytic ray-tracing algorithm for weak lensing. Monthly Notices of the Royal Astronomical Society, 415(1), 881-892. https://doi.org/10.1111/j.1365-2966.2011.18754.x
- Generalizations of teleparallel gravity and local Lorentz symmetrySotiriou, T., Li, B., & Barrow, J. (2011). Generalizations of teleparallel gravity and local Lorentz symmetry. Physical Review D, 83, Article 104030. https://doi.org/10.1103/physrevd.83.104030
- Nonlinear structure formation with the environmentally dependent dilatonBrax, P., van de Bruck, C., Davis, A.-C., Li, B., & Shaw, D. (2011). Nonlinear structure formation with the environmentally dependent dilaton. Physical Review D, 83, Article 104026. https://doi.org/10.1103/physrevd.83.104026
- Large-scale structure in f(T) gravityLi, B., Sotiriou, T., & Barrow, J. (2011). Large-scale structure in f(T) gravity. Physical Review D, 83, Article 104017. https://doi.org/10.1103/physrevd.83.104017
- On the effects of coupled scalar fields on structure formationLi, B., & Barrow, J. (2011). On the effects of coupled scalar fields on structure formation. Monthly Notices of the Royal Astronomical Society, 413(1), 262-270. https://doi.org/10.1111/j.1365-2966.2010.18130.x
- f(T) Gravity and local Lorentz invarianceLi, B., Sotiriou, T., & Barrow, J. (2011). f(T) Gravity and local Lorentz invariance. Physical Review D, 83(6), Article 064035. https://doi.org/10.1103/physrevd.83.064035
- Voids in coupled scalar field cosmologyLi, B. (2011). Voids in coupled scalar field cosmology. Monthly Notices of the Royal Astronomical Society, 411(4), 2615-2627. https://doi.org/10.1111/j.1365-2966.2010.17867.x
- N-body simulations for extended quintessence modelsLi, B., Mota, D., & Barrow, J. (2011). N-body simulations for extended quintessence models. Astrophysical Journal, 728(2), Article 109. https://doi.org/10.1088/0004-637x/728/2/109
- Varying alpha from N-body simulationsLi, B., Mota, D., & Barrow, J. (2011). Varying alpha from N-body simulations. Astrophysical Journal, 728(2), Article 108. https://doi.org/10.1088/0004-637x/728/2/108
- N-body simulations for f(R) gravity using a self-adaptive particle-mesh codeZhao, G., Li, B., & Koyama, K. (2011). N-body simulations for f(R) gravity using a self-adaptive particle-mesh code. Physical Review D, 83(4), Article 044007. https://doi.org/10.1103/physrevd.83.044007
- N-body simulations for coupled scalar field cosmologyLi, B., & Barrow, J. (2011). N-body simulations for coupled scalar field cosmology. Physical Review D, 83(2), Article 024007. https://doi.org/10.1103/physrevd.83.024007
- Modified Kepler's law, escape speed and two-body problem in MOND-like theoriesZhao, H., Li, B., & Bienaymé, O. (2010). Modified Kepler’s law, escape speed and two-body problem in MOND-like theories. Physical Review D, 82(10), Article 103001. https://doi.org/10.1103/physrevd.82.103001
- Structure formation by the fifth force: segregation of baryons and dark matterLi, B., & Zhao, H. (2010). Structure formation by the fifth force: segregation of baryons and dark matter. Physical Review D, 81(10), Article 104047. https://doi.org/10.1103/physrevd.81.104047
- Structure formation by fifth force: power spectrum from N-Body simulationsZhao, H., Maccio, A., Li, B., Hoekstra, H., & Feix, M. (2010). Structure formation by fifth force: power spectrum from N-Body simulations. Astrophysical Journal Letters, 712(2), L179-L183. https://doi.org/10.1088/2041-8205/712/2/l179
- Dark fluid: A unified framework for modified Newtonian dynamics, dark matter, and dark energyZhao, H., & Li, B. (2010). Dark fluid: A unified framework for modified Newtonian dynamics, dark matter, and dark energy. Astrophysical Journal, 712(1), 130-141. https://doi.org/10.1088/0004-637x/712/1/130
- Indistinguishable macroscopic behaviour of Palatini gravities and general relativityLi, B., Mota, D., & Shaw, D. (2009). Indistinguishable macroscopic behaviour of Palatini gravities and general relativity. Classical and Quantum Gravity, 26(5). https://doi.org/10.1088/0264-9381/26/5/055018
- A realistic cosmology without cold dark matterLi, B., & Zhao, H. (2009). A realistic cosmology without cold dark matter. Physical Review D, 80. https://doi.org/10.1103/physrevd.80.064007
- Does bulk viscosity create a Viable unified dark matter model?Li, B., & Barrow, J. (2009). Does bulk viscosity create a Viable unified dark matter model?. Physical Review D, 79. https://doi.org/10.1103/physrevd.79.103521
- Structure formation by fifth force I: N-body versus linear simulationsLi, B., & Zhao, H. (2009). Structure formation by fifth force I: N-body versus linear simulations. Physical Review D, 80. https://doi.org/10.1103/physrevd.80.044027
- A Nonuniform Dark Energy Fluid: Perturbation EquationsHalle, A., Zhao, H., & Li, B. (2008). A Nonuniform Dark Energy Fluid: Perturbation Equations. Astrophysical Journal Supplement, 177(1), 1-13. https://doi.org/10.1086/587744
- Detecting a Lorentz-violating field in cosmologyLi, B., Mota, D., & Barrow, J. (2008). Detecting a Lorentz-violating field in cosmology. Physical Review D, 77. https://doi.org/10.1103/physrevd.77.024032
- Varying-alpha cosmologies with potentialsBarrow, J., & Li, B. (2008). Varying-alpha cosmologies with potentials. Physical Review D, 78. https://doi.org/10.1103/physrevd.78.083536
- Microscopic and macroscopic behaviours of Palatini modified gravity theoriesLi, B., Mota, D., & Shaw, D. (2008). Microscopic and macroscopic behaviours of Palatini modified gravity theories. Physical Review D, 78. https://doi.org/10.1103/physrevd.78.064018
- Testing alternative theories of dark matter with the CMBLi, B., Barrow, J., Mota, D., & Zhao, H. (2008). Testing alternative theories of dark matter with the CMB. Physical Review D, 78. https://doi.org/10.1103/physrevd.78.064021
- The cosmology of f(R) gravity in the metric variational approachLi, B., & Barrow, J. (2007). The cosmology of f(R) gravity in the metric variational approach. Physical Review D, 75. https://doi.org/10.1103/physrevd.75.084010
- The cosmology of modified Gauss-Bonnet gravityLi, B., Barrow, J., & Mota, D. (2007). The cosmology of modified Gauss-Bonnet gravity. Physical Review D, 76. https://doi.org/10.1103/physrevd.76.044027
- Constraints on f(R) cosmology in the Palatini formalismLi, B., Chan, K.-C., & Chu, M.-C. (2007). Constraints on f(R) cosmology in the Palatini formalism. Physical Review D, 76. https://doi.org/10.1103/physrevd.76.024002
- The cosmology of Ricci-tensor-squared gravity in the Palatini variational approachLi, B., Barrow, J., & Mota, D. (2007). The cosmology of Ricci-tensor-squared gravity in the Palatini variational approach. Physical Review D, 76. https://doi.org/10.1103/physrevd.76.104047
- Big bang nucleosynthesis constraints on universal extra dimensions and varying fundamental constantsLi, B., & Chu, M.-C. (2006). Big bang nucleosynthesis constraints on universal extra dimensions and varying fundamental constants. Physical Review D, 73. https://doi.org/10.1103/physrevd.73.025004
- CMB and matter power spectra of early f(R) cosmology in Palatini formalismLi, B., & Chu, M.-C. (2006). CMB and matter power spectra of early f(R) cosmology in Palatini formalism. Physical Review D, 74. https://doi.org/10.1103/physrevd.74.104010
- Big bang nucleosynthesis with an evolving radion in the Brane-world scenarioLi, B., & Chu, M.-C. (2006). Big bang nucleosynthesis with an evolving radion in the Brane-world scenario. Physical Review D, 73. https://doi.org/10.1103/physrevd.73.023509
- Dark energy as a signature of extra dimensions.Li, B., Chu, M.-C., Cheung, K.-C., & Tang, A. (n.d.). Dark energy as a signature of extra dimensions. Advance online publication (No. astro-ph/0501367). Article astro-ph/0501367.
- Reconstructing features in the primordial power spectrum [preprint]Li, Y., Zhu, H., & Li, B. (n.d.). Reconstructing features in the primordial power spectrum [preprint]. Monthly Notices of the Royal Astronomical Society [Submitted].
Report
- Upscaling ExaHyPE – on each and every coreLi, B., Schulz, H., Tuft, A., Weinzierl, T., & Zhang, H. (2023). Upscaling ExaHyPE – on each and every core. ARCHER2. https://doi.org/10.5281/zenodo.7888492
Supervision students
Michael Collier
PGR Student