Staff profile
Overview

Affiliation | Telephone |
---|---|
Assistant Professor in the Department of Mathematical Sciences |
Publications
Journal Article
- On the continuity of Følner averagesFuhrmann, G., Gröger, M., & Hauser, T. (2025). On the continuity of Følner averages. Journal of Functional Analysis, 289(7), Article 111039. https://doi.org/10.1016/j.jfa.2025.111039
- On the probability of positive finite-time Lyapunov exponents on strange non-chaotic attractorsRemo, F., Fuhrmann, G., & Jäger, T. (2024). On the probability of positive finite-time Lyapunov exponents on strange non-chaotic attractors. Discrete and Continuous Dynamical Systems, 44(4), 929-942. https://doi.org/10.3934/dcds.2023132
- Tame or wild Toeplitz shiftsFuhrmann, G., Kellendonk, J., & Yassawi, R. (2023). Tame or wild Toeplitz shifts. Ergodic Theory and Dynamical Systems, 44(5), 1379-1417. https://doi.org/10.1017/etds.2023.58
- Amorphic complexity of group actions with applications to quasicrystalsFuhrmann, G., Gröger, M., Jäger, T., & Kwietniak, D. (2023). Amorphic complexity of group actions with applications to quasicrystals. Transactions of the American Mathematical Society, 376(4), 2395-2418. https://doi.org/10.1090/tran/8700
- On the continuity of Følner averagesFuhrmann, G., Gröger, M., & Hauser, T. (2023). On the continuity of Følner averages. Arxiv. https://doi.org/10.48550/arXiv.2303.17191
- The structure of mean equicontinuous group actionsFuhrmann, G., Gröger, M., & Lenz, D. (2022). The structure of mean equicontinuous group actions. Israel Journal of Mathematics, 247, 75-123. https://doi.org/10.1007/s11856-022-2292-8
- On the effect of forcing of fold bifurcations and early-warning signals in population dynamicsRemo, F., Fuhrmann, G., & Jäger, T. (2022). On the effect of forcing of fold bifurcations and early-warning signals in population dynamics. Nonlinearity, 35(12), 6485-6527. https://doi.org/10.1088/1361-6544/ac98ee
- The bifurcation set as a topological invariant for one-dimensional dynamicsFuhrmann, G., Gröger, M., & Passeggi, A. (2021). The bifurcation set as a topological invariant for one-dimensional dynamics. Nonlinearity, 34(3), Article 1366. https://doi.org/10.1088/1361-6544/abb78c
- Irregular model sets and tame dynamicsFuhrmann, G., Glasner, E., Jäger, T., & Oertel, C. (2021). Irregular model sets and tame dynamics. Transactions of the American Mathematical Society, 374(5). https://doi.org/10.1090/tran/8349
- Constant length substitutions, iterated function systems and amorphic complexityFuhrmann, G., & Gröger, M. (2020). Constant length substitutions, iterated function systems and amorphic complexity. Mathematische Zeitschrift, 295(3-4). https://doi.org/10.1007/s00209-019-02426-2
- On tameness of almost automorphic dynamical systems for general groupsFuhrmann, G., & Kwietniak, D. (2020). On tameness of almost automorphic dynamical systems for general groups. Bulletin of the London Mathematical Society, 52(1). https://doi.org/10.1112/blms.12304
- Non-smooth saddle-node bifurcations II: Dimensions of strange attractorsFuhrmann, G., Gröger, M., & Jäger, T. (2018). Non-smooth saddle-node bifurcations II: Dimensions of strange attractors. Ergodic Theory and Dynamical Systems, 38(8). https://doi.org/10.1017/etds.2017.4
- Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponentFuhrmann, G., & Wang, J. (2017). Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 37(11). https://doi.org/10.3934/dcds.2017249
- Non-smooth saddle-node bifurcations III: Strange attractors in continuous timeFuhrmann, G. (2016). Non-smooth saddle-node bifurcations III: Strange attractors in continuous time. Journal of Differential Equations, 261(3). https://doi.org/10.1016/j.jde.2016.04.026
- Amorphic complexityFuhrmann, G., Gröger, M., & Jäger, T. (2016). Amorphic complexity. Nonlinearity, 29(2). https://doi.org/10.1088/0951-7715/29/2/528
- Non-smooth saddle-node bifurcations I: existence of an SNAFuhrmann, G. (2016). Non-smooth saddle-node bifurcations I: existence of an SNA. Ergodic Theory and Dynamical Systems, 36(4). https://doi.org/10.1017/etds.2014.92