Staff profile
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences |
Research interests
- discrete groups
- hyperbolic geometry
Esteem Indicators
- 2000: Vice-Chair HoDoMS (Heads of Departments of Mathematical Sciences):
- 2000: 'National and International Collaboration': 'International collaborators:
RK Boadi, KNUST, Ghana
W Cao, Hunan University of Science and Technology, China
A Cano, UNAM, Mexico
M Deraux, Fourier Institute, Grenoble, France
E Falbel, University of Paris VI, France
N Gusevskii, Federal University of Minas Gerais, Brazil
Y Jiang, Hunan University, China
S Kamiya, Okayama University of Science, Japan
I Kim, Seoul National University, Korea
A D Mednykh, Sobelev Institute, Russia
C Menzel, University of Bielefeld, Germany
J Paupert, Arizona State University, USA
I D Platis, University of Crete
J Seade, UNAM, Mexico
A Y Vesnin, Sobelev Institute, Russia
J Wang, Hunan University, China
X Wang, Hunan Normal University, China
P Will, Fourier Institute, Grenoble, France
B Xie, Hunan University, China
- 2000: 'Grants': 'Research grants:
JSPS Invitation Fellowship 2016.
UK-Mexico Visiting Chair 2017
- 2000: Editorial work: Joint Editor-in-Chief, Geometriae Dedicata
- 2000: 'Invitation to research centres': Tokyo Institute of Technology, April 2016 to March 2017 (supported by JSPS).
Publications
Chapter in book
- The mapping class group of the twice punctured torusParker, J. R., & Series, C. (2004). The mapping class group of the twice punctured torus. In T. W. Mueller (Ed.), Groups: Topological, Combinatorial and Arithmetic Aspects (pp. 405-486). Cambridge University Press.
- Tetrahedral decomposition of punctured torus bundlesParker, J. R. (2003). Tetrahedral decomposition of punctured torus bundles. In Y. Komori, V. Markovic, & C. Series (Eds.), Kleinian Groups and Hyperbolic 3-Manifolds (pp. 275-291). Cambridge University Press.
- Pseudo-Anosov diffeomorphisms of the twice punctured torusMenzel, C., & Parker, J. R. (2003). Pseudo-Anosov diffeomorphisms of the twice punctured torus. In J. R. Cho & J. Mennicke (Eds.), Recent Advances in Group Theory and Low-Dimensional Topology (pp. 141-154). Heldermann Verlag.
- Coordinates for quasi-Fuchsian punctured torus space,Parker, J. R., & Parkkonen, J. (1998). Coordinates for quasi-Fuchsian punctured torus space,. In The Epstein Birthday Schrift (pp. 451-478). Geometry and Topology Monographs.
Conference Paper
- Complex hyperbolic free groups with many parabolic elementsParker, J. R., & Will, P. (2015). Complex hyperbolic free groups with many parabolic elements. In Geometry, groups and dynamics : ICTS program : groups, geometry and dynamics, December 3-16, 2012, Almora, India. (pp. 327-348). American Mathematical Society. https://doi.org/10.1090/conm/639/12782
- Traces in complex hyperbolic geometryParker, J. R. (2012). Traces in complex hyperbolic geometry. In W. M. Goldman, C. Series, & S. P. Tan (Eds.), Geometry, topology and dynamics of character varieties. (pp. 191-245). World Scientific Publishing. https://doi.org/10.1142/9789814401364_0006
- Complex hyperbolic quasi-Fuchsian groupsParker, J. R., & Platis, I. D. (2010). Complex hyperbolic quasi-Fuchsian groups. In F. P. Gardiner, G. González-Diez, & C. Kourouniotis (Eds.), Geometry of Riemann surfaces : proceedings of the Anogia conference to celebrate the 65th birthday of William J. Harvey (pp. 309-355). Cambridge University Press.
- Complex hyperbolic latticesParker, J. R. (2009). Complex hyperbolic lattices. In K. Dekimpe, P. Igodt, & A. Valette (Eds.), Discrete groups and geometric structures: Workshop on Discrete Groups and Geometric Structures, with Applications III, May 26-30, 2008, Kortrijk, Belgium (pp. 1-42). American Mathematical Society.
- Jorgensen's inequality for non-Archimedean metric spacesArmitage, J., & Parker, J. R. (2008). Jorgensen’s inequality for non-Archimedean metric spaces. In M. Kapranov, S. Kolyada, Y. Manin, P. Moree, & L. Potyagailo (Eds.), Geometry and dynamics of groups and spaces : in memory of Alexander Reznikov. (pp. 97-111). Birkhäuser Verlag. https://doi.org/10.1007/978-3-7643-8608-5_2
Journal Article
- Fenchel-Nielsen coordinates for SL(3,C) representationsDavila Figueroa, R., & Parker, J. R. (in press). Fenchel-Nielsen coordinates for SL(3,C) representations. Geometriae Dedicata.
- Free groups generated by two parabolic mapsKalane, S. B., & Parker, J. R. (2023). Free groups generated by two parabolic maps. Mathematische Zeitschrift, 303, Article 9. https://doi.org/10.1007/s00209-022-03160-y
- Chaotic Delone SetsAlvarez Lopez, J. A., Barral Lijo, R., Hunton, J., Nozawa, H., & Parker, J. R. (2021). Chaotic Delone Sets. Discrete and Continuous Dynamical Systems - Series A, 41(8), 3781-3796. https://doi.org/10.3934/dcds.2021016
- New non-arithmetic complex hyperbolic lattices IIDeraux, M., Parker, J. R., & Paupert, J. (2021). New non-arithmetic complex hyperbolic lattices II. The Michigan Mathematical Journal., 70(1), 133-205. https://doi.org/10.1307/mmj/1592532044
- Classification of non-free Kleinian groups generated by two parabolic transformationsAkiyoshi, H., Ohshika, K., Parker, J. R., Sakuma, M., & Yoshida, H. (2021). Classification of non-free Kleinian groups generated by two parabolic transformations. Transactions of the American Mathematical Society, 374(3), 1765-1814. https://doi.org/10.1090/tran/8246
- Non-arithmetic monodromy of higher hypergeometric functionsParker, J. R. (2020). Non-arithmetic monodromy of higher hypergeometric functions. Journal d’Analyse Mathématique, 142, 41-70. https://doi.org/10.1007/s11854-020-0132-5
- Minimal codimension one foliation of a symmetric space by Damek-Ricci spacesKnieper, G., Parker, J. R., & Peyerimhoff, N. (2020). Minimal codimension one foliation of a symmetric space by Damek-Ricci spaces. Differential Geometry and Its Applications, 69, Article 101605. https://doi.org/10.1016/j.difgeo.2020.101605
- Discreteness of Ultra-Parallel Complex Hyperbolic Triangle Groups of Type [m_1,m_2,0]Monaghan, A., Parker, J. R., & Pratoussevitch, A. (2019). Discreteness of Ultra-Parallel Complex Hyperbolic Triangle Groups of Type [m_1,m_2,0]. Journal of the London Mathematical Society, 100(2), 545-567. https://doi.org/10.1112/jlms.12227
- Minimizing length of billiard trajectories in hyperbolic polygonsParker, J. R., Peyerimhoff, N., & Siburg, K. F. (2018). Minimizing length of billiard trajectories in hyperbolic polygons. Conformal Geometry and Dynamics, 22, 315-332. https://doi.org/10.1090/ecgd/328
- Shimizu’s Lemma for Quaternionic Hyperbolic SpaceCao, W., & Parker, J. R. (2018). Shimizu’s Lemma for Quaternionic Hyperbolic Space. Computational Methods and Function Theory - Springer, 18(1), 159-191. https://doi.org/10.1007/s40315-017-0212-4
- On cusp regions associated to screw-parabolic mapsParker, J. R. (2018). On cusp regions associated to screw-parabolic maps. Geometriae Dedicata, 192(1), 267-294. https://doi.org/10.1007/s10711-017-0241-1
- A complex hyperbolic Riley sliceParker, J. R., & Will, P. (2017). A complex hyperbolic Riley slice. Geometry and Topology, 21(6), 3391-3451. https://doi.org/10.2140/gt.2017.21.3391
- Complex Hyperbolic Triangle Groups with 2-fold SymmetryParker, J. R., & Sun, L. (2017). Complex Hyperbolic Triangle Groups with 2-fold Symmetry. Proceedings of the International Geometry Center, 10(1), 1-21. https://doi.org/10.15673/tmgc.v1i10.547
- Action of R-Fuchsian groups on CP2Cano, A., Parker, J. R., & Seade, J. (2016). Action of R-Fuchsian groups on CP2. Asian Journal of Mathematics, 20(3), 449-474. https://doi.org/10.4310/ajm.2016.v20.n3.a3
- New non-arithmetic complex hyperbolic latticesDeraux, M., Parker, J. R., & Paupert, J. (2016). New non-arithmetic complex hyperbolic lattices. Inventiones Mathematicae, 203(3), 681-771. https://doi.org/10.1007/s00222-015-0600-1
- Complex hyperbolic (3,3,n)-triangle groupsParker, J. R., Wang, J., & Xie, B. (2016). Complex hyperbolic (3,3,n)-triangle groups. Pacific Journal of Mathematics, 280(2), 433-453. https://doi.org/10.2140/pjm.2016.280.433
- On the classification of unitary matricesGongopadhyay, K., Parker, J. R., & Parsad, S. (2015). On the classification of unitary matrices. Osaka Journal of Mathematics, 52(4), 959-993.
- Mostow's lattices and cone metrics on the sphereBoadi, R. K., & Parker, J. R. (2015). Mostow’s lattices and cone metrics on the sphere. Advances in Geometry, 15(1), 27-53. https://doi.org/10.1515/advgeom-2014-0022
- Reversible complex hyperbolic isometriesGongopadhyay, K., & Parker, J. R. (2013). Reversible complex hyperbolic isometries. Linear Algebra and Its Applications, 438(6), 2728-2739. https://doi.org/10.1016/j.laa.2012.11.029
- Non-Discrete Complex Hyperbolic Triangle Groups of Type (n, n, ∞; k)Kamiya, S., Parker, J. R., & Thompson, J. M. (2012). Non-Discrete Complex Hyperbolic Triangle Groups of Type (n, n, ∞; k). Canadian Mathematical Bulletin, 55(2), 329-338. https://doi.org/10.4153/cmb-2011-094-8
- Census of the complex hyperbolic sporadic triangle groupsDeraux, M., Parker, J. R., & Paupert, J. (2011). Census of the complex hyperbolic sporadic triangle groups. Experimental Mathematics, 20(4), 467-586. https://doi.org/10.1080/10586458.2011.565262
- The geometry of the Gauss-Picard modular groupFalbel, E., Francsics, G., & Parker, J. R. (2011). The geometry of the Gauss-Picard modular group. Mathematische Annalen, 349(2), 459-508. https://doi.org/10.1007/s00208-010-0515-5
- Generators of a Picard modular group in two complex dimensionsFalbel, E., Francsics, G., Lax, P. D., & Parker, J. R. (2011). Generators of a Picard modular group in two complex dimensions. Proceedings of the American Mathematical Society, 139, 2439-2447. https://doi.org/10.1090/s0002-9939-2010-10653-6
- Jørgensen's inequality and collars in n-dimensional quaternionic hyperbolic space.Cao, W., & Parker, J. R. (2011). Jørgensen’s inequality and collars in n-dimensional quaternionic hyperbolic space. Quarterly Journal of Mathematics, 62(3), 523-543. https://doi.org/10.1093/qmath/haq003
- Notes on complex hyperbolic triangle groupsKamiya, S., Parker, J. R., & Thompson, J. M. (2010). Notes on complex hyperbolic triangle groups. Conformal Geometry and Dynamics, 14, 202-218. https://doi.org/10.1090/s1088-4173-2010-00215-8
- Unfaithful complex hyperbolic triangle groups II: Higher order reflectionsParker, J. R., & Paupert, J. (2009). Unfaithful complex hyperbolic triangle groups II: Higher order reflections. Pacific Journal of Mathematics, 239(2), 357-389. https://doi.org/10.2140/pjm.2009.239.357
- Global, geometrical coordinates on Falbel's cross-ratio varietyParker, J. R., & Platis, I. D. (2009). Global, geometrical coordinates on Falbel’s cross-ratio variety. Canadian Mathematical Bulletin, 52(2), 285-294. https://doi.org/10.4153/cmb-2009-031-3
- Conjugacy classification of quaternionic Möbius transformationsParker, J. R., & Short, I. (2009). Conjugacy classification of quaternionic Möbius transformations. Computational Methods and Function Theory - Springer, 9(1), 13-25. https://doi.org/10.1007/bf03321711
- Unfaithful complex hyperbolic triangle groups I: InvolutionsParker, J. R. (2008). Unfaithful complex hyperbolic triangle groups I: Involutions. Pacific Journal of Mathematics, 238(1), 145-169. https://doi.org/10.2140/pjm.2008.238.145
- Complex hyperbolic Fenchel-Nielsen coordinatesParker, J., & Platis, I. (2008). Complex hyperbolic Fenchel-Nielsen coordinates. Topology, 47(2), 101-135. https://doi.org/10.1016/j.top.2007.08.001
- Discrete subgroups of PU(2,1) with screw parabolic elementsKamiya, S., & Parker, J. (2008). Discrete subgroups of PU(2,1) with screw parabolic elements. Mathematical Proceedings of the Cambridge Philosophical Society, 144(2), 443-455. https://doi.org/10.1017/s0305004107000941
- Jorgensen's inequality for metric spaces with applications to the octonions.Markham, S., & Parker, J. R. (2007). Jorgensen’s inequality for metric spaces with applications to the octonions. Advances in Geometry, 7, 19-38. https://doi.org/10.1515/advgeom.2007.002
- Cone metrics on the sphere and Livne's latticesParker, J. R. (2006). Cone metrics on the sphere and Livne’s lattices. Acta Mathematica, 196(1), 1-64. https://doi.org/10.1007/s11511-006-0001-9
- Open sets of maximal dimension in complex hyperbolic quasi-Fuchsian spaceParker, J. R., & Platis, I. D. (2006). Open sets of maximal dimension in complex hyperbolic quasi-Fuchsian space. Journal of Differential Geometry, 73(2), 319-350.
- The geometry of the Eisenstein-Picard modular groupFalbel, E., & Parker, J. R. (2006). The geometry of the Eisenstein-Picard modular group. Duke Mathematical Journal, 131(2), 249-289. https://doi.org/10.1215/s0012-7094-06-13123-x
- On the classification of quaternionic Moebius transformationsCao, W., Parker, J. R., & Wang, X. (2004). On the classification of quaternionic Moebius transformations. Mathematical Proceedings of the Cambridge Philosophical Society, 137(2), 349-361. https://doi.org/10.1017/s0305004104007868
- On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups.Mednykh, A. D., Parker, J. R., & Vesnin, A. Y. (2004). On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups. Boletín De La Sociedad Matemática Mexicana, 10(3), 357-381.
- The moduli space of the modular group in complex hyperbolic geometryFalbel, E., & Parker, J. R. (2003). The moduli space of the modular group in complex hyperbolic geometry. Inventiones Mathematicae, 152(1), 57-88. https://doi.org/10.1007/s00222-002-0267-2
- Complex hyperbolic quasi-Fuchsian groups and Toledo's invariantGusevskii, N., & Parker, J. R. (2003). Complex hyperbolic quasi-Fuchsian groups and Toledo’s invariant. Geometriae Dedicata, 97, 151-185.
- Geometry of quaternionic hyperbolic manifoldsKim, I., & Parker, J. R. (2003). Geometry of quaternionic hyperbolic manifolds. Mathematical Proceedings of the Cambridge Philosophical Society, 135(2), 291-320. https://doi.org/10.1017/s030500410300687x
- Collars in complex and quaternionic hyperbolic manifoldsMarkham, S., & Parker, J. R. (2003). Collars in complex and quaternionic hyperbolic manifolds. Geometriae Dedicata, 97, 199-213.
- Uniform discreteness and Heisenberg scew motionsJiang, Y., & Parker, J. R. (2003). Uniform discreteness and Heisenberg scew motions. Mathematische Zeitschrift, 243, 653-669.
- Jorgensen's inequality for complex hyperbolic spaceJiang, Y., Kamiya, S., & Parker, J. R. (2003). Jorgensen’s inequality for complex hyperbolic space. Geometriae Dedicata, 97, 55-80.
- On discrete subgroups of PU(1,2;C) with Heisenberg translations IIKamiya, S., & Parker, J. R. (2002). On discrete subgroups of PU(1,2;C) with Heisenberg translations II. Revue Roumaine Mathematiques Pures Et Appliquees, 47(5-6), 689-695.
- Kleinian groups with singly cusped parabolic fixed pointsParker, J. R., & Stratmann, B. O. (2001). Kleinian groups with singly cusped parabolic fixed points. Kodai Mathematical Journal, 24(2), 169-206.
- Representations of free Fuchsian groups in complex hyperbolic spaceGusevskii, N., & Parker, J. R. (2000). Representations of free Fuchsian groups in complex hyperbolic space. Topology, 39(1), 33-60.
- Combinatorics of simple closed curves on the twice punctured torusKeen, L., Parker, J. R., & Series, C. (1999). Combinatorics of simple closed curves on the twice punctured torus. Israel Journal of Mathematics, 112, 29-60.
- On the volumes of cusped, complex hyperbolic manifolds and orbifoldsParker, J. R. (1998). On the volumes of cusped, complex hyperbolic manifolds and orbifolds. Duke Mathematical Journal, 94(3), 433-464. https://doi.org/10.1215/s0012-7094-98-09418-2
- Uniform discreteness and Heisenberg translationsParker, J. R. (1997). Uniform discreteness and Heisenberg translations. Mathematische Zeitschrift, 225, 484-505.
- Bending Formulae for Convex Hull BoundariesParker, J. R., & Series, C. (1996). Bending Formulae for Convex Hull Boundaries. Journal d’Analyse Mathématique, 67, 165-198.
- Dirichlet polyhedra for parabolic cyclic groups in complex hyperbolic spaceParker, J. R. (1995). Dirichlet polyhedra for parabolic cyclic groups in complex hyperbolic space. Geometriae Dedicata, 57(3), 223-234.
- Kleinian circle packingsParker, J. R. (1995). Kleinian circle packings. Topology, 34(3), 489-496.
- On Ford Isometric Spheres in Complex Hyperbolic SpaceParker, J. R. (1994). On Ford Isometric Spheres in Complex Hyperbolic Space. Mathematical Proceedings of the Cambridge Philosophical Society, 115, 501-512.
- Drawing Limit Sets of Kleinian Groups using Finite State AutomataMcShane, G., Parker, J. R., & Redfern, I. (1994). Drawing Limit Sets of Kleinian Groups using Finite State Automata. Experimental Mathematics, 3, 153-170.