Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1453
Affiliation | Telephone |
---|---|
Bank Teacher in the Department of Mathematical Sciences | |
Tutor in the Department of Mathematical Sciences | +44 (0) 191 33 41525 |
Research interests
- differential geometry
Esteem Indicators
- 2000: 'Grants': 'Applied successfully to EPSRC for several LMS Durham Symposia.Several small Scheme 4 grants from LMS.'
- 2000: 'Plenary and invited talks': 'Invited talks at international conferences:2003. Differential Geometry of Submanifolds and Integrable Systems: Kobe, Japan. Invited visits to overseas centres: 2001: To Tokyo, where I gave two talks 2003: To Valenciennes, where I gave a talk 2003: To Kobe and Tokyo, where I gave two talks'
- 2000: 'International Collaboration': 'L Vrancken (U of Valenciennes)M Guest (Tokyo Metropolitan Univ) '
- 2000: 'Schools': 'Sept 2002:Â Jt organiser of LMS/EPSRC Short course on Differential GeometryJan 2004: Jt organiser of UK/Japan Winter School on `Geometry and Analysis towards Quantum Theory' Jan 2005: Jt organiser of UK/Japan Winter School on `Geometric, Spectral, and Stochastic Analysis''
Publications
Authored book
- A First Course in Differential GeometryWoodward, L., & Bolton, J. (2018). A First Course in Differential Geometry. Cambridge University Press.
Chapter in book
- Some geometrical aspects of the 2-dimensional Toda equationsBolton, J., & Woodward, L. (1997). Some geometrical aspects of the 2-dimensional Toda equations. In B. N. Apanasov, S. B. Bradlow, W. A. Rodrigues, & K. K. Uhlenbeck (Eds.), Geometry, Topology and Physics (pp. 69-81). De Gruyter.
- Minimal surfaces and the Toda equations for the classical groups.Bolton, J., & Woodward, L. (1996). Minimal surfaces and the Toda equations for the classical groups. In F. Dillen, G. Komrakov, U. Simon, I. Van de Woestijne, & L. Verstraelen (Eds.), Geometry and topology of submanifolds. VIII (pp. 22-30). World Scientific Publishing.
- On harmonic 2-spheres in Geometry and Topology of Submanifolds VIIBolton, J., & Woodward, L. (1995). On harmonic 2-spheres in Geometry and Topology of Submanifolds VII. In F. Dillen, M. Magid, U. Simon, I. Van de Woestijne, & L. Verstraelen (Eds.), Geometry and Topology of Submanifolds, VII (pp. 88-91). World Scientific Publishing.
- The affine Toda equations and minimal surfaces.Bolton, J., & Woodward, L. (1994). The affine Toda equations and minimal surfaces. In A. Fordy & J. Wood (Eds.), Harmonic maps and integrable systems (pp. 59-82). Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-663-14092-4
Conference Paper
- The Toda equations and equiharmonic maps of surfaces into flag manifoldsBolton, J. (2002). The Toda equations and equiharmonic maps of surfaces into flag manifolds [Conference paper].
- The Affine Toda Equations in the Geometry of Surfaces.Bolton, J., Kotake, T., Nishikawa, S., & Schoen, R. M. (1994). The Affine Toda Equations in the Geometry of Surfaces. In T. Kotake, S. Nishikawa, & R. M. Schoen (Eds.), Geometry and Global Analysis, Report of the First MSJ International Research Institute July 12-23, 1993, Sendai, Japan (pp. 175-189). Tohoku University Mathematical Institute.
- The space of harmonic maps of into.Bolton, J., & Woodward, L. (1994). The space of harmonic maps of into. In T. Kotake, S. Nishikawa, & R. M. Schoen (Eds.), Geometry and global analysis: Report of the first MSJ International Research Institute July 12-23, 1993, Tohoku University, Sendai, Japan. (pp. 165-173). Tohoku University Mathematical Institute.
Journal Article
- Transforms for minimal surfaces in the 5-sphereBolton, J., & Vrancken, L. (2009). Transforms for minimal surfaces in the 5-sphere. Differential Geometry and Its Applications, 27(1), 34-46. https://doi.org/10.1016/j.difgeo.2008.06.005
- The space of harmonic two-spheres in the unit four-sphereBolton, J., & Woodward, L. (2006). The space of harmonic two-spheres in the unit four-sphere. Tohoku Mathematical Journal, 58(2), 231-236. https://doi.org/10.2748/tmj/1156256402
- Ruled minimal Lagrangian submanifolds of complex projective 3-spaceBolton, J., & Vrancken, L. (2005). Ruled minimal Lagrangian submanifolds of complex projective 3-space. Asian Journal of Mathematics, 9(1), 45-56. https://doi.org/10.4310/ajm.2005.v9.n1.a4
- Toda equations and Pluecker formulaeBolton, J., & Woodward, L. (2003). Toda equations and Pluecker formulae. Bulletin of the London Mathematical Society, 35(2), 145-151. https://doi.org/10.1112/s0024609302001716
- From certain Lagrangian minimal submanifolds of the 3-dimensional complex projective space to minimal surfaces in the 5-sphere.Bolton, J., Scharlach, C., Vrancken, L., & Woodward, L. (2002). From certain Lagrangian minimal submanifolds of the 3-dimensional complex projective space to minimal surfaces in the 5-sphere. Bulletin of the Australian Mathematical Society, 66(3), 465-475.
- From surfaces in the 5-sphere to 3-manifolds in complex projective 3-spaceBolton, J., Scharlach, C., & Vrancken, L. (2002). From surfaces in the 5-sphere to 3-manifolds in complex projective 3-space. Bulletin of the Australian Mathematical Society, 66, 465-475.
- Linearly full harmonic 2-spheres in S^4 of area 20\piBolton, J., & Woodward, L. (2001). Linearly full harmonic 2-spheres in S^4 of area 20\pi. International Journal of Mathematics, 12(5), 535-554. https://doi.org/10.1142/s0129167x01000915
- Higher Singularities and the Twistor Fibration π: CP3 → S4Bolton, J., & Woodward, L. (2000). Higher Singularities and the Twistor Fibration π: CP3 → S4. Geometriae Dedicata, 80(1-3), 231-246. https://doi.org/10.1023/a%3A100525941
- Totally real minimal surfaces with non-circular ellipse of curvature in the nearly Kähler S6Bolton, J., Vrancken, L., & Woodward, L. (1997). Totally real minimal surfaces with non-circular ellipse of curvature in the nearly Kähler S6. Journal of the London Mathematical Society, 56(3), 625-644. https://doi.org/10.1112/s0024610797005541
- Almost complex curves and Hopf hypersurfaces in the nearly Kähler 6-sphere.Bolton, J., Berndt, J., & Woodward, L. (1995). Almost complex curves and Hopf hypersurfaces in the nearly Kähler 6-sphere. Geometriae Dedicata, 56(3), 237-247. https://doi.org/10.1007/bf01263564
- Minimal surfaces and the affine Toda field modelBolton, J., Pedit, F., & Woodward, L. (1995). Minimal surfaces and the affine Toda field model. Journal für Die Reine Und Angewandte Mathematik., 1995(459), 119-150. https://doi.org/10.1515/crll.1995.459.119
- On almost complex curves in the nearly Kähler 6-sphereBolton, J., Vrancken, L., & Woodward, L. (1994). On almost complex curves in the nearly Kähler 6-sphere. Quarterly Journal of Mathematics, 45(4), 407-427. https://doi.org/10.1093/qmath/45.4.407