Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1843
Affiliation | Telephone |
---|---|
Assistant Professor in the Department of Mathematical Sciences |
Research interests
- Bayesian statistics
- Model and variable selection
- High-dimensional regression
- Statistical modelling
Publications
Chapter in book
- Stochastic Search Variable Selection (SSVS)
Perrakis, K., & Ntzoufras, I. (2015). Stochastic Search Variable Selection (SSVS). In N. Balakrishnan, P. Brandimarte, B. Everitt, G. Molenberghs, W. Piegorsch, & F. Ruggeri (Eds.), Wiley StatsRef: Statistics Reference Online (1-6). John Wiley and Sons. https://doi.org/10.1002/9781118445112.stat07829 - Bayesian Variable Selection for Generalized Linear Models Using the Power-Conditional-Expected-Posterior Prior
Perrakis, K., Fouskakis, D., & Ntzoufras, I. (2015). Bayesian Variable Selection for Generalized Linear Models Using the Power-Conditional-Expected-Posterior Prior. In S. Frühwirth-Schnatter, A. Bitto, G. Kastner, & A. Posekany (Eds.), Bayesian Statistics from Methods to Models and Applications (59-73). Springer Proceedings in Mathematics & Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-16238-6_6
Conference Paper
- Quantifying input-uncertainty in traffic assignment models
Perrakis, K., Cools, M., Karlis, D., Janssens, D., Kochan, B., Bellemans, T., & Wets, G. (2012, January). Quantifying input-uncertainty in traffic assignment models. Paper presented at Transportation Research Board 91st Annual Meeting, Washington, DC, United States - Poisson mixture regression for Bayesian inference on large over-dispersed transportation origin-destination matrices
Perrakis, K., Karlis, D., Cools, M., Janssens, D., & Wets, G. (2012, December). Poisson mixture regression for Bayesian inference on large over-dispersed transportation origin-destination matrices. Presented at 27th International Workshop on Statistical Modelling, Prague - A Bayesian approach for modeling origin-destination matrices
Perrakis, K., Karlis, D., Cools, M., Janssens, D., & Wets, G. (2011, December). A Bayesian approach for modeling origin-destination matrices. Presented at Transportation Research Board 90th Annual Meeting, Washington, DC, United States
Conference Proceeding
- Proceedings of the 38th International Workshop on Statistical Modelling
(2024, July). Proceedings of the 38th International Workshop on Statistical Modelling. Presented at 38th International Workshop on Statistical Modelling (IWSM), Durham, UK
Edited book
- Developments in Statistical Modelling
Einbeck, J., Maeng, H., Ogundimu, E., & Perrakis, K. (Eds.). (2024). Developments in Statistical Modelling. Springer Nature. https://doi.org/10.1007/978-3-031-65723-8
Journal Article
- Regularized joint mixture models
Perrakis, K., Lartigue, T., Dondelinger, F., & Mukherjee, S. (2023). Regularized joint mixture models. Journal of Machine Learning Research, 24, 1-47 - Variations of power-expected-posterior priors in normal regression models
Fouskakis, D., Ntzoufras, I., & Perrakis, K. (2020). Variations of power-expected-posterior priors in normal regression models. Computational Statistics & Data Analysis, 143, Article 106836. https://doi.org/10.1016/j.csda.2019.106836 - Scalable prediction of acute myeloid leukemia using high-dimensional machine learning and blood transcriptomics
Warnat-Herresthal, S., Perrakis, K., Taschler, B., Becker, M., Baßler, K., Beyer, M., Günther, P., Schulte-Schrepping, J., Seep, L., Klee, K., Ulas, T., Haferlach, T., Mukherjee, S., & Schultze, J. L. (2020). Scalable prediction of acute myeloid leukemia using high-dimensional machine learning and blood transcriptomics. iScience, 23(1), Article 100780. https://doi.org/10.1016/j.isci.2019.100780 - Scalable Bayesian regression in high dimensions with multiple data sources
Perrakis, K., Mukherjee, S., & Initiative, T. A. D. N. (2020). Scalable Bayesian regression in high dimensions with multiple data sources. Journal of Computational and Graphical Statistics, 29(1), 28-39. https://doi.org/10.1080/10618600.2019.1624294 - Bayesian variable selection using the hyper-g prior in WinBUGS
Perrakis, K., & Ntzoufras, I. (2018). Bayesian variable selection using the hyper-g prior in WinBUGS. Wiley Interdisciplinary Reviews: Computational Statistics, 10(6), https://doi.org/10.1002/wics.1442 - Power-expected-posterior priors for generalized linear models
Fouskakis, D., Ntzoufras, I., & Perrakis, K. (2017). Power-expected-posterior priors for generalized linear models. Bayesian Analysis, 13(3), 721-748. https://doi.org/10.1214/17-ba1066 - Bayesian inference for transportation origin-destination matrices: the Poisson-inverse Gaussian and other Poisson mixtures
Perrakis, K., Karlis, D., Cools, M., & Janssens, D. (2015). Bayesian inference for transportation origin-destination matrices: the Poisson-inverse Gaussian and other Poisson mixtures. Journal of the Royal Statistical Society: Series A, 178(1), 271-296. https://doi.org/10.1111/rssa.12057 - On the use of marginal posteriors in marginal likelihood estimation via importance sampling
Perrakis, K., Ntzoufras, I., & Tsionas, E. G. (2014). On the use of marginal posteriors in marginal likelihood estimation via importance sampling. Computational Statistics & Data Analysis, 77, 54-69. https://doi.org/10.1016/j.csda.2014.03.004 - Controlling for seasonal patterns and time varying confounders in time-series epidemiological models: a simulation study
Perrakis, K., Gryparis, A., Schwartz, J., Tertre, A. L., Katsouyanni, K., Forastiere, F., Stafoggia, M., & Samoli, E. (2014). Controlling for seasonal patterns and time varying confounders in time-series epidemiological models: a simulation study. Statistics in Medicine, 33(28), 4904-4918. https://doi.org/10.1002/sim.6271 - A Bayesian approach for modeling origin–destination matrices
Perrakis, K., Karlis, D., Cools, M., Janssens, D., Vanhoof, K., & Wets, G. (2012). A Bayesian approach for modeling origin–destination matrices. Transportation Research Part A: Policy and Practice, 46(1), 200-212. https://doi.org/10.1016/j.tra.2011.06.005
Supervision students
Duaa Nadhrah
1S
Linbin Lai
1S