Skip to main content

Mark Kincey

Honorary Fellow

Honorary Fellow in the Department of Geography



My research is concerned with large-scale landscape perturbations, both natural geomorphic events and intensive anthropogenic disturbances, with a particular focus on quantifying human-environment interactions within upland and mountain environments. Within this overarching theme I have two key strands to my research: (1) the multi-hazard and risk chain in mountain environments following high magnitude earthquakes, and (2) the environmental implications of intensive mineral extraction.

Research Projects

Multi-hazard and risk chain in mountain environments

Sajag-Nepal ( funded by the Global Challenges Research Fund (2021-2023) 

The Sajag-Nepal project examines how to use local knowledge and new interdisciplinary science to inform better decision making and reduce the impacts of multi-hazards in Nepal. The project is grounded within long-term community-based work with rural residents and builds on experience of assessing and planning for earthquake and landslide risk with the Government of Nepal, the United Nations, and the wider humanitarian and development community. My specific role on the project is to lead the development and analysis of the first dynamic, national-scale multi-hazard inventory for Nepal, covering the full chain of earthquake- and monsoon-triggered hazards. Time series analysis of earth observation data is being used to develop automated methods of multi-hazard mapping and classification, allowing the rapid construction of multi-hazard inventories but also providing important information on failure dates and post-failure recovery trajectories, such as patterns of revegetation and surface movement.

Post-earthquake landslide hazard and risk in Nepal ( - funded by UKRI-DFID SHEAR (2016-2021) 

Working with colleagues at NSET-Nepal (, this project developed out of a need to track the development of landslide hazard and risk in Nepal following the 2015 Mw 7.8 Gorkha earthquake. Through the construction of a multi-temporal landslide inventory, we have demonstrated how the landslide distribution evolved and persisted in the years following the earthquake (Kincey et al., 2021), and used these data to assess how landslide hazard and population exposure generate landslide risk nationwide in Nepal. Our modelling of changing patterns of debris flow runout from pre-existing landslides has also shown the importance of considering the role of cascading hazards in determining secondary landslide hazard and risk (Rosser et al., 2021; Kincey et al., In Revision – ESP&L; Arrell et al., In Prep).

Anthropogeomorphology and the environmental legacies of intensive mining

Mining landscapes and environmental legacies in the North Pennines, UK (2011 – present)

Historically, unregulated metal mines represented significant anthropogenic sediment sources (Kincey et al., 2022), resulting in massive aggradation of headwater catchments and fundamental changes to river systems. My recent work in this area has involved the construction of historic sediment budgets for a 200 km2 area of the North Pennines, UK (Kincey et al., In Prep), assessment of channel planform change and aggradation along mining-affected river systems (Wishart et al., In Prep), and the use of a sediment connectivity model to quantify spatio-temporal variability in sediment source significance over a 350-year period (Kincey et al., In Prep).

Abandoned mines also represent a continuing source of erodible and highly contaminated sediments, which pose a significant risk to downstream water quality, ecology and agriculture. To address this issue, I have developed a long term (now >9 years) and ongoing monitoring programme to monitor surface change and contaminant flux at abandoned mines in the North Pennines. Initial results have shown that infrequent, high magnitude storm events are responsible for the overwhelming majority of sediment-borne contaminant flux from abandoned mines (Kincey et al, 2018; Kincey et al., In Prep).

The legacy of historic mining on sediment dynamics in Swaledale, N. Yorks - Funded by Yorkshire Geological Society (2020 – present)

In collaboration with Dr Ed Baynes (Loughborough University) and Professor Jeff Warburton (Durham University), this project is aimed at investigating the geomorphic impact of extreme rainfall in Swaledale, North Yorkshire, in July 2019, which impacted a number of historical abandoned metal mines. The research will develop understanding of how abandoned mines respond to large storm events, including how affected catchments are responding to the continued transport of legacy sediments downstream from the mine source locations.

2018 - present: Post-Doctoral Research Associate, Department of Geography, Durham University

2015 - 2019: Teaching Fellow in GIS and Physical Geography, Department of Geography, Durham University

2015 - 2017: Post-Doctoral Research Associate, Department of Geography, Durham University

2011 – 2016: PhD in Physical Geography and Archaeology, Durham University (Durham Doctoral Studentship Award)

Title: “Assessing the impact of historical metal mining on upland landscapes: a nested sediment budget approach

2008 – 2011: Research Fellow, Institute of Archaeology and Antiquity, University of Birmingham 


Chapter in book

Journal Article