Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1430
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Mathematical Sciences |
Research interests
- String theory and the string/gauge theory correspondence
Publications
Conference Paper
- Stringy effects for spinning strings and the Bethe ansatzSchafer-Nameki (Hamburg U.), S., & Zamaklar, M. (2005). Stringy effects for spinning strings and the Bethe ansatz. In Fortsch.Phys.54:487-495,2006.
- Many faces of D-branes: From flat space, via AdS to PP-wavesZamaklar, M. (2004). Many faces of D-branes: From flat space, via AdS to PP-waves. In Vrnjacka Banja 2003, Mathematical, theoretical and phenomenological challenges beyond the standard model* 258-268.
- Holographic dynamics of unstable branes in AdSPeeters, K. (AEI P., & Zamaklar, M. (2004). Holographic dynamics of unstable branes in AdS.
Journal Article
- Holographic meson decays via worldsheet instantonsPeeters, K., Matuszewski, M., & Zamaklar, M. (2018). Holographic meson decays via worldsheet instantons. Journal of High Energy Physics, 2018(6), Article 83. https://doi.org/10.1007/jhep06%282018%29083
- Phases of kinky holographic nuclear matterElliot-Ripley, M., Sutcliffe, P., & Zamaklar, M. (2016). Phases of kinky holographic nuclear matter. Journal of High Energy Physics, 2016(10), Article 088. https://doi.org/10.1007/jhep10%282016%29088
- Signals of a new phase in N=2 gauge theory with a magnetic field on the three-sphereSuphakorn, C., Peeters, K., Vanichchapongjaroen, P., & Zamaklar, M. (2014). Signals of a new phase in N=2 gauge theory with a magnetic field on the three-sphere. Journal of High Energy Physics, 2014(9), Article 58. https://doi.org/10.1007/jhep09%282014%29058
- A chiral magnetic spiral in the holographic Sakai-Sugimoto modelBallon Bayona, A., Peeters, K., & Zamaklar, M. (2012). A chiral magnetic spiral in the holographic Sakai-Sugimoto model. Journal of High Energy Physics, 2012(11), Article 164. https://doi.org/10.1007/jhep11%282012%29164
- A Non-homogeneous ground state of the low-temperature Sakai-Sugimoto modelBallon Bayona, C., Peeters, K., & Zamaklar, M. (2011). A Non-homogeneous ground state of the low-temperature Sakai-Sugimoto model. Journal of High Energy Physics, 2011(6), Article 92. https://doi.org/10.1007/jhep06%282011%29092
- Finite-size effects for jet quenchingChunlen, S., Peeters, K., & Zamaklar, M. (2010). Finite-size effects for jet quenching. Journal of High Energy Physics. Advance online publication.
- Exploring colourful holographic superconductorsPeeters, K., Powell, J., & Zamaklar, M. (2009). Exploring colourful holographic superconductors. Journal of High Energy Physics, 2009(09), Article 101. https://doi.org/10.1088/1126-6708/2009/09/101
- Temperature versus acceleration: The Unruh effect for holographic modelsParedes, A., Peeters, K., & Zamaklar, M. (2009). Temperature versus acceleration: The Unruh effect for holographic models. Journal of High Energy Physics, 2009(04), Article 015. https://doi.org/10.1088/1126-6708/2009/04/015
- Mesons versus quasi-normal modes: Undercooling and overheatingParedes, A., Peeters, K., & Zamaklar, M. (2008). Mesons versus quasi-normal modes: Undercooling and overheating. Journal of High Energy Physics, 2008(05), Article 027. https://doi.org/10.1088/1126-6708/2008/05/027
- Dissociation by accelerationPeeters, K., & Zamaklar, M. (2008). Dissociation by acceleration. Journal of High Energy Physics, 2008(01), Article 038. https://doi.org/10.1088/1126-6708/2008/01/038
- Rho meson condensation at finite isospin chemical potential in a holographic model for QCDAharony, O., Peeters, K., Sonnenschein, J., & Zamaklar, M. (2008). Rho meson condensation at finite isospin chemical potential in a holographic model for QCD. Journal of High Energy Physics, 2008(02), Article 071. https://doi.org/10.1088/1126-6708/2008/02/071
- The String/gauge theory correspondence in QCDPeeters, K., & Zamaklar, M. (2007). The String/gauge theory correspondence in QCD. European Physical Journal - Special Topics, 152(1), 113-138. https://doi.org/10.1140/epjst/e2007-00379-0
- The Zamolodchikov-Faddeev algebra for AdS(5) x S**5 superstringArutyunov, G., Frolov, S., & Zamaklar, M. (2007). The Zamolodchikov-Faddeev algebra for AdS(5) x S**5 superstring. Journal of High Energy Physics, 2007(04). https://doi.org/10.1088/1126-6708/2007/04/002
- The Off-shell Symmetry Algebra of the Light-cone AdS(5) x S**5 Superstring.Arutyunov, G., Frolov, S., Plefka, J., & Zamaklar, M. (2007). The Off-shell Symmetry Algebra of the Light-cone AdS(5) x S**5 Superstring. Journal of Physics A: Mathematical and Theoretical, 40(13). https://doi.org/10.1088/1751-8113/40/13/018
- Holographic melting and related properties of mesons in a quark-gluon plasmaPeeters, K., Zamaklar, M., & Sonnenschein, J. (2006). Holographic melting and related properties of mesons in a quark-gluon plasma. Physical Review D, Particles and Fields, 74(10). https://doi.org/10.1103/physrevd.74.106008
- The AdS(5) x S**5 superstring in light-cone gauge and its Bethe equationsFrolov, S., Plefka, J., & Zamaklar, M. (2006). The AdS(5) x S**5 superstring in light-cone gauge and its Bethe equations. Journal of Physics A: Mathematical and General, 39(41), 13037-13082. https://doi.org/10.1088/0305-4470/39/41/s15
- How Accurate is the Quantum String Bethe Ansatz?Schafer-Nameki, S., Zamaklar, M., & Zarembo, K. (2006). How Accurate is the Quantum String Bethe Ansatz?. Journal of High Energy Physics, 0612.
- Holographic decays of large-spin mesonsPeeters, K., Sonnenschein, J., & Zamaklar, M. (2005). Holographic decays of large-spin mesons. Journal of High Energy Physics, 0602.
- Loop quantum gravity: An Outside viewNicolai, H., Peeters, K., & Zamaklar, M. (2005). Loop quantum gravity: An Outside view. Classical and Quantum Gravity, 22(19), 193-247. https://doi.org/10.1088/0264-9381/22/19/r01
- Stringy sums and corrections to the quantum string Bethe ansatz.Schafer-Nameki, S., & Zamaklar, M. (2005). Stringy sums and corrections to the quantum string Bethe ansatz. Journal of High Energy Physics, 10. https://doi.org/10.1088/1126-6708/2005/10/044
- Quantum corrections to spinning strings in AdS(5) x S(5) and Bethe ansatz: A Comparative studySchäfer-Nameki, S., Zamaklar, M., & Zarembo, K. (2005). Quantum corrections to spinning strings in AdS(5) x S(5) and Bethe ansatz: A Comparative study. Journal of High Energy Physics, 2005(09). https://doi.org/10.1088/1126-6708/2005/09/051
- Splitting strings and chainsPeeters, K., Plefka, J., & Zamaklar, M. (2005). Splitting strings and chains. Fortschritte Der Physik, 53, 640-646.
- Linking Backlund and monodromy charges for strings on AdS(5) x S**5Arutyunov, G., & Zamaklar, M. (2005). Linking Backlund and monodromy charges for strings on AdS(5) x S**5. Journal of High Energy Physics, 0507, Article 026.
- Symmetry breaking, permutation D-branes on group manifolds: Boundary states and geometric descriptionSarkissian, G., & Zamaklar, M. (2004). Symmetry breaking, permutation D-branes on group manifolds: Boundary states and geometric description. Nuclear Physics B, 696, 66-106.
- Anti-de Sitter vacua require fermionic brane chargesPeeters, K., & Zamaklar, M. (2004). Anti-de Sitter vacua require fermionic brane charges. Physical Review D, 69, Article 066009.
- Splitting spinning strings in AdS/CFTPeeters, K., Plefka, J., & Zamaklar, M. (2004). Splitting spinning strings in AdS/CFT. Journal of High Energy Physics, 0411.
- AdS/CFT description of D-particle decayPeeters, K., & Zamaklar, M. (2004). AdS/CFT description of D-particle decay. Physical Review D, 71, Article 026007.
- Diagonal D-branes in product spaces and their Penrose limitsSarkissian, G., & Zamaklar, M. (2003). Diagonal D-branes in product spaces and their Penrose limits. Journal of High Energy Physics, 0403, Article 005.
- On Nonperturbative extensions of anti-de Sitter algebrasMeessen, P., Peeters, K., & Zamaklar, M. (2003). On Nonperturbative extensions of anti-de Sitter algebras. ArXiv. Advance online publication. https://doi.org/10.48550/arxiv.hep-th/0302198
- D-branes in a plane wave from covariant open stringsBain, P., Peeters, K., & Zamaklar, M. (2003). D-branes in a plane wave from covariant open strings. Physical Review D, Particles and Fields, 67(6). https://doi.org/10.1103/physrevd.67.066001
- Supergravity solutions for D-branes in Hpp wave backgroundsBain, P., Meessen, P., & Zamaklar, M. (2002). Supergravity solutions for D-branes in Hpp wave backgrounds. Classical and Quantum Gravity, 20, 913-934.
- The First law of black brane mechanicsTownsend, P. K., & Zamaklar, M. (2001). The First law of black brane mechanics. Classical and Quantum Gravity, 18, 5269-5286.
- Motion on moduli spaces with potentialsPeeters, K., & Zamaklar, M. (2001). Motion on moduli spaces with potentials. Journal of High Energy Physics, 0112.
- Finite-size Effects from Giant MagnonsArutyunov, G., Frolov, S., & Zamaklar, M. (n.d.). Finite-size Effects from Giant Magnons. Journal of High Energy Physics. Advance online publication.
Working Paper
- Hiding canonicalisation in tensor computer algebraPrice, D., Peeters, K., & Zamaklar, M. (2022). Hiding canonicalisation in tensor computer algebra. Arxiv. https://doi.org/10.48550/arXiv.2208.11946