Staff profile
Overview
https://apps.dur.ac.uk/biography/image/4069
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Mathematical Sciences |
Research interests
- Differential Geometry
- Geometric Topology
- Riemannian Geometry
- Transformation Groups
Esteem Indicators
- 2025: Glasgow Mathematical Journal: Subject editor, Differential Geometry, 2025--present
- 2021: Irish Committee for Mathematics Education: Secretary, 2021--2023
A subcommittee of the Irish Mathematical Society dealing with issues related to mathematics education at all levels
Publications
Chapter in book
- Fake Lens Spaces and Non-Negative Sectional CurvatureGoette, S., Kerin, M., & Shankar, K. (2020). Fake Lens Spaces and Non-Negative Sectional Curvature. In O. Dearricott, W. Tuschmann, Y. Nikolayevsky, T. Leistner, & D. Crowley (Eds.), Differential Geometry in the Large (pp. 285-290). Cambridge University Press. https://doi.org/10.1017/9781108884136.016
Journal Article
- Manifolds that admit a double disk-bundle decompositionDeVito, J., Galaz-García, F., & Kerin, M. (2023). Manifolds that admit a double disk-bundle decomposition. Indiana University Mathematics Journal, 72(4), 1503-1551. https://doi.org/10.1512/iumj.2023.72.9408
- Torus actions on rationally elliptic manifoldsGalaz-García, F., Kerin, M., & Radeschi, M. (2021). Torus actions on rationally elliptic manifolds. Mathematische Zeitschrift, 297, 197-221. https://doi.org/10.1007/s00209-020-02508-6
- Highly connected 7-manifolds and non-negative sectional curvatureGoette, S., Kerin, M., & Shankar, K. (2020). Highly connected 7-manifolds and non-negative sectional curvature. Annals of Mathematics, 191(3), 829-892. https://doi.org/10.4007/annals.2020.191.3.3
- Semi-Free Actions with Manifold Orbit SpacesHarvey, J., Kerin, M., & Shankar, K. (2020). Semi-Free Actions with Manifold Orbit Spaces. Documenta Mathematica, 25, 2085-2114. https://doi.org/10.25537/dm.2020v25.2085-2114
- Torus Orbifolds, Slice-Maximal Torus Actions, and Rational EllipticityGalaz-García, F., Kerin, M., Radeschi, M., & Wiemeler, M. (2018). Torus Orbifolds, Slice-Maximal Torus Actions, and Rational Ellipticity. International Mathematics Research Notices, 2018(18), 5786-5822. https://doi.org/10.1093/imrn/rnx064
- Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimensionGalaz-Garcia, F., & Kerin, M. (2014). Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension. Mathematische Zeitschrift, 276(1-2), 133-152. https://doi.org/10.1007/s00209-013-1190-5
- A note on totally geodesic embeddings of Eschenburg spaces into Bazaikin spacesKerin, M. (2013). A note on totally geodesic embeddings of Eschenburg spaces into Bazaikin spaces. Annals of Global Analysis and Geometry, 43(1), 63-73. https://doi.org/10.1007/s10455-012-9333-1
- Riemannian submersions from simple, compact Lie groupsKerin, M., & Shankar, K. (2012). Riemannian submersions from simple, compact Lie groups. Münster Journal of Mathematics, 5(1), 25-40.
- On the curvature of biquotientsKerin, M. (2012). On the curvature of biquotients. Mathematische Annalen, 352(1), 155-178. https://doi.org/10.1007/s00208-011-0634-7
- Some new examples with almost positive curvatureKerin, M. (2011). Some new examples with almost positive curvature. Geometry & Topology, 15(1), 217-260. https://doi.org/10.2140/gt.2011.15.217
- Almost positive curvature on the Gromoll-Meyer sphereEschenburg, J.-H., & Kerin, M. (2008). Almost positive curvature on the Gromoll-Meyer sphere. Proceedings of the American Mathematical Society, 136(9), 3263-3270. https://doi.org/10.1090/s0002-9939-08-09429-x
Other (Print)
- Non-negative curvature and the linking formGoette, S., Kerin, M., & Shankar, K. (2019). Non-negative curvature and the linking form (J. Lott, A. Neves, I. A. Taimanov, & B. Wilking, Eds.). Oberwolfach Reports.
- Non-negative sectional curvature on exotic 7-spheresGoette, S., Kerin, M., & Shankar, K. (2017). Non-negative sectional curvature on exotic 7-spheres (J. Lott, A. Neves, I. A. Taimanov, & B. Wilking, Eds.). Oberwolfach Reports.
Report
- Homogeneous metrics on spheresKerin, M., & Wraith, D. (2003). Homogeneous metrics on spheres.