Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1502
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences |
Research interests
- Mathematical Physics
- Topological Solitons
Publications
Authored book
- Topological SolitonsManton, N., & Sutcliffe, P. (2004). Topological Solitons. Cambridge University Press. https://doi.org/10.2277/0521838363
Chapter in book
- Excitable and magnetic knotsSutcliffe, P. (2024). Excitable and magnetic knots. In R. Ricca & X. Liu (Eds.), Knotted Fields (pp. 141-168). Springer Nature. https://doi.org/10.1007/978-3-031-57985-1
- HopfionsSutcliffe, P. (2018). Hopfions. In M. Ge, A. Niemi, K. Phua, & L. Takhtajan (Eds.), Ludwig Faddeev memorial volume : a life in mathematical physics. (pp. 539-547). World Scientific Publishing. https://doi.org/10.1142/9789813233867_0025
- Skyrmions and Nuclei.Battye, R., Manton, N., & Sutcliffe, P. (2010). Skyrmions and Nuclei. In G. Brown & M. Rho (Eds.), The Multifaceted Skyrmion. (pp. 3-39). World Scientific Publishing.
Journal Article
- JNR SkyrmionsSutcliffe, P. (2024). JNR Skyrmions. Journal of High Energy Physics, 2024(12), Article 54. https://doi.org/10.1007/jhep12%282024%29054
- Rational SkyrmionsHarland, D., & Sutcliffe, P. (2023). Rational Skyrmions. Journal of Physics A: Mathematical and Theoretical, 56(42), Article 425401. https://doi.org/10.1088/1751-8121/acfbcc
- Q-lump scatteringSutcliffe, P. (2023). Q-lump scattering. Journal of High Energy Physics, 2023(6), Article 162. https://doi.org/10.1007/jhep06%282023%29162
- A Skyrme Model with Novel Chiral Symmetry BreakingSutcliffe, P. (2023). A Skyrme Model with Novel Chiral Symmetry Breaking. Symmetry, Integrability and Geometry: Methods and Applications, 19, Article 051. https://doi.org/10.3842/sigma.2023.051
- A hyperbolic analogue of the Atiyah-Hitchin manifoldSutcliffe, P. (2022). A hyperbolic analogue of the Atiyah-Hitchin manifold. Journal of High Energy Physics, 2022(1), Article 90. https://doi.org/10.1007/jhep01%282022%29090
- Boundary metrics on soliton moduli spacesSutcliffe, P. (2022). Boundary metrics on soliton moduli spaces. Journal of High Energy Physics, 2022(1), Article 118. https://doi.org/10.1007/jhep01%282022%29118
- Spectral curves of hyperbolic monopoles from ADHMSutcliffe, P. (2021). Spectral curves of hyperbolic monopoles from ADHM. Journal of Physics A: Mathematical and Theoretical, 54(16), Article 165401. https://doi.org/10.1088/1751-8121/abe5cc
- Creation and observation of Hopfions in magnetic multilayer systemsKent, N., Reynolds, N., Raftrey, D., Campbell, I. T., Virasawmy, S., Dhuey, S., Chopdekar, R. V., Hierro-Rodriguez, A., Sorrentino, A., Pereiro, E., Ferrer, S., Hellman, F., Sutcliffe, P., & Fischer, P. (2021). Creation and observation of Hopfions in magnetic multilayer systems. Nature Communications, 12(1), Article 1562. https://doi.org/10.1038/s41467-021-21846-5
- Colonies of threaded rings in excitable mediaMaucher, F., & Sutcliffe, P. (2020). Colonies of threaded rings in excitable media. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 102(1), Article 010601(R). https://doi.org/10.1103/physreve.102.010601
- Threaded Rings that Swim in Excitable MediaCincotti, A., Maucher, F., Evans, D., Chapin, B. M., Horner, K., Bromley, E., Lobb, A., Steed, J. W., & Sutcliffe, P. (2019). Threaded Rings that Swim in Excitable Media. Physical Review Letters, 123(25), Article 258102. https://doi.org/10.1103/physrevlett.123.258102
- Dynamics of linked filaments in excitable mediaMaucher, F., & Sutcliffe, P. (2019). Dynamics of linked filaments in excitable media. Nonlinearity, 32(3), Article 942. https://doi.org/10.1088/1361-6544/aafbb3
- Skyrmions and Clustering in Light NucleiNaya, C., & Sutcliffe, P. (2018). Skyrmions and Clustering in Light Nuclei. Physical Review Letters, 121(23), Article 232002. https://doi.org/10.1103/physrevlett.121.232002
- Hopfions in chiral magnetsSutcliffe, P. (2018). Hopfions in chiral magnets. Journal of Physics A: Mathematical and Theoretical, 51(37), Article 375401. https://doi.org/10.1088/1751-8121/aad521
- Skyrmions in models with pions and rho mesonsNaya, C., & Sutcliffe, P. (2018). Skyrmions in models with pions and rho mesons. Journal of High Energy Physics, 2018(5), Article 174. https://doi.org/10.1007/jhep05%282018%29174
- Rings on strings in excitable mediaMaucher, F., & Sutcliffe, P. (2018). Rings on strings in excitable media. Journal of Physics A: Mathematical and Theoretical, 51(5), Article 055102. https://doi.org/10.1088/1751-8121/aaa1ba
- Length of excitable knotsMaucher, F., & Sutcliffe, P. (2017). Length of excitable knots. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 96(1), Article 012218. https://doi.org/10.1103/physreve.96.012218
- Skyrmion knots in frustrated magnetsSutcliffe, P. (2017). Skyrmion knots in frustrated magnets. Physical Review Letters, 118(24), Article 247203. https://doi.org/10.1103/physrevlett.118.247203
- Chiral ferromagnetic fluids: Let's twist againSutcliffe, P. (2017). Chiral ferromagnetic fluids: Let’s twist again. Nature Materials, 16(4), 392-393. https://doi.org/10.1038/nmat4883
- Phases of kinky holographic nuclear matterElliot-Ripley, M., Sutcliffe, P., & Zamaklar, M. (2016). Phases of kinky holographic nuclear matter. Journal of High Energy Physics, 2016(10), Article 088. https://doi.org/10.1007/jhep10%282016%29088
- Knot theory in modern chemistryHorner, K. E., Miller, M. A., Steed, J. W., & Sutcliffe, P. M. (2016). Knot theory in modern chemistry. Chemical Society Reviews, 45(23), 6432-6448. https://doi.org/10.1039/c6cs00448b
- Untangling knots via reaction-diffusion dynamics of vortex stringsMaucher, F., & Sutcliffe, P. (2016). Untangling knots via reaction-diffusion dynamics of vortex strings. Physical Review Letters, 116(17), Article 178101. https://doi.org/10.1103/physrevlett.116.178101
- The dynamics of aloof baby SkyrmionsSalmi, P., & Sutcliffe, P. (2016). The dynamics of aloof baby Skyrmions. Journal of High Energy Physics, 2016(1), Article 145. https://doi.org/10.1007/jhep01%282016%29145
- Magnetic bags in hyperbolic spaceBolognesi, S., Harland, D., & Sutcliffe, P. (2015). Magnetic bags in hyperbolic space. Physical Review D, 92(2), Article 025052. https://doi.org/10.1103/physrevd.92.025052
- Holographic SkyrmionsSutcliffe, P. (2015). Holographic Skyrmions. Modern Physics Letters B, 29(16), Article 1540051. https://doi.org/10.1142/s0217984915400515
- Aloof baby SkyrmionsSalmi, P., & Sutcliffe, P. (2015). Aloof baby Skyrmions. Journal of Physics A: Mathematical and Theoretical, 48(3), Article 035401. https://doi.org/10.1088/1751-8113/48/3/035401
- Hyperbolic monopoles, JNR data and spectral curvesBolognesi, S., Cockburn, A., & Sutcliffe, P. (2015). Hyperbolic monopoles, JNR data and spectral curves. Nonlinearity, 28(1), 211-235. https://doi.org/10.1088/0951-7715/28/1/211
- Leapfrogging vortex rings in the Landau–Lifshitz equationNiemi, A., & Sutcliffe, P. (2014). Leapfrogging vortex rings in the Landau–Lifshitz equation. Nonlinearity, 27(9). https://doi.org/10.1088/0951-7715/27/9/2095
- A low-dimensional analogue of holographic baryonsBolognesi, S., & Sutcliffe, P. (2014). A low-dimensional analogue of holographic baryons. Journal of Physics A: Mathematical and Theoretical, 47(13). https://doi.org/10.1088/1751-8113/47/13/135401
- Platonic hyperbolic monopolesManton, N., & Sutcliffe, P. (2014). Platonic hyperbolic monopoles. Communications in Mathematical Physics, 325(3), 821-845. https://doi.org/10.1007/s00220-013-1864-1
- The Sakai-Sugimoto solitonBolognesi, S., & Sutcliffe, P. (2014). The Sakai-Sugimoto soliton. Journal of High Energy Physics, 2014(1), Article 78. https://doi.org/10.1007/jhep01%282014%29078
- The dynamics of domain wall SkyrmionsJennings, P., & Sutcliffe, P. (2013). The dynamics of domain wall Skyrmions. Journal of Physics A: Mathematical and Theoretical, 46(46), Article 465401. https://doi.org/10.1088/1751-8113/46/46/465401
- ADHM polytopesAllen, J., & Sutcliffe, P. (2013). ADHM polytopes. Journal of High Energy Physics, 2013(5), Article 63. https://doi.org/10.1007/jhep05%282013%29063
- Hyperbolic vortices with large magnetic fluxSutcliffe, P. (2012). Hyperbolic vortices with large magnetic flux. Physical Review D, Particles and Fields, 85(12), Article 125015. https://doi.org/10.1103/physrevd.85.125015
- Broken baby SkyrmionsJäykkä, J., Speight, M., & Sutcliffe, P. (2012). Broken baby Skyrmions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2140), 1085-1104. https://doi.org/10.1098/rspa.2011.0543
- Skyrmions in a truncated BPS theorySutcliffe, P. (2011). Skyrmions in a truncated BPS theory. Journal of High Energy Physics, 2011(4), Article 045. https://doi.org/10.1007/jhep04%282011%29045
- Monopoles in AdS.Sutcliffe, P. (2011). Monopoles in AdS. Journal of High Energy Physics, 2011(08), Article 032. https://doi.org/10.1007/jhep08%282011%29032
- Hopf solitons and elastic rods.Harland, D., Speight, M., & Sutcliffe, P. (2011). Hopf solitons and elastic rods. Physical Review D, 83(6), Article 065008. https://doi.org/10.1103/physrevd.83.065008
- Gauss-Bonnet Holographic SuperconductorsBarclay, L., Gregory, R., Kanno, S., & Sutcliffe, P. (2010). Gauss-Bonnet Holographic Superconductors. Journal of High Energy Physics, 2010(12), Article 29. https://doi.org/10.1007/jhep12%282010%29029
- Hopf solitons in the Nicole modelGillard, M., & Sutcliffe, P. (2010). Hopf solitons in the Nicole model. Journal of Mathematical Physics, 51(12), Article 122305. https://doi.org/10.1063/1.3525805
- Skyrmions, instantons and holographySutcliffe, P. (2010). Skyrmions, instantons and holography. Journal of High Energy Physics, 2010(08), Article 019. https://doi.org/10.1007/jhep08%282010%29019
- Baby Skyrmions stabilized by vector mesonsFoster, D., & Sutcliffe, P. (2009). Baby Skyrmions stabilized by vector mesons. Physical Review D, 79.
- Multi-Skyrmions with vector mesonsSutcliffe, P. (2009). Multi-Skyrmions with vector mesons. Physical Review D, 79.
- Stability and the equation of state for kinky vortonsBattye, R., & Sutcliffe, P. (2009). Stability and the equation of state for kinky vortons. Physical Review D, 80.
- Formation and evolution of kinky vortonsBattye, R., Pearson, J., Pike, S., & Sutcliffe, P. (2009). Formation and evolution of kinky vortons. Journal of Cosmology and Astroparticle Physics, 9.
- Domain walls and double bubblesGillard, M., & Sutcliffe, P. (2009). Domain walls and double bubbles. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465, 2911-2925.
- Vorton construction and dynamicsBattye, R., & Sutcliffe, P. (2009). Vorton construction and dynamics. Nuclear Physics B, 814(1-2), 180-194. https://doi.org/10.1016/j.nuclphysb.2009.01.021
- Light nuclei of even mass number in the Skyrme modelBattye, R., Manton, N., Sutcliffe, P., & S.W. Wood, S. (2009). Light nuclei of even mass number in the Skyrme model. Physical Review C, 80(3), Article 034323. https://doi.org/10.1103/physrevc.80.034323
- Q-balls, Integrability and DualityBowcock, P., Foster, D., & Sutcliffe, P. (2009). Q-balls, Integrability and Duality. Journal of Physics A: Mathematical and Theoretical, 42(8), Article 085403. https://doi.org/10.1088/1751-8113/42/8/085403
- Kinky vortonsBattye, R., & Sutcliffe, P. (2008). Kinky vortons. Nuclear Physics B, 805(1-2), 287-304. https://doi.org/10.1016/j.nuclphysb.2008.07.034
- Knots in the Skyrme-Faddeev modelSutcliffe, P. (2007). Knots in the Skyrme-Faddeev model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2087), 3001-3020. https://doi.org/10.1098/rspa.2007.0038
- Skyrmions and the alpha-particle model of nucleiBattye, R., Manton, N., & Sutcliffe, P. (2007). Skyrmions and the alpha-particle model of nuclei. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2077), 261-279. https://doi.org/10.1098/rspa.2006.1767
- Vortex rings in ferromagnetsSutcliffe, P. (2007). Vortex rings in ferromagnets. Physical Review B, 76.
- Schrodinger-Chern-Simons vortex dynamics.Krusch, S., & Sutcliffe, P. (2006). Schrodinger-Chern-Simons vortex dynamics. Nonlinearity, 19(7), 1515-1534. https://doi.org/10.1088/0951-7715/19/7/003
- Skyrmions with massive pions.Battye, R., & Sutcliffe, P. (2006). Skyrmions with massive pions. Physical Review. C, Nuclear Physics., 73(5). https://doi.org/10.1103/physrevc.73.055205
- Spinning Skyrmions and the Skyrme parameters.Battye, R., Krusch, S., & Sutcliffe, P. (2005). Spinning Skyrmions and the Skyrme parameters. Physics Letters B, 626(1-4), 120-126. https://doi.org/10.1016/j.physletb.2005.08.097
- Skyrmions, instantons, mass and curvature.Atiyah, M., & Sutcliffe, P. (2005). Skyrmions, instantons, mass and curvature. Physics Letters B, 605(1-2), 106-114. https://doi.org/10.1016/j.physletb.2004.11.015
- Skyrmions and the pion mass.Battye, R., & Sutcliffe, P. (2005). Skyrmions and the pion mass. Nuclear Physics B, 705(1-2), 384-400. https://doi.org/10.1016/j.nuclphysb.2004.11.018
- Instantons and the Buckyball.Sutcliffe, P. (2004). Instantons and the Buckyball. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 460(2050), 2903-2912. https://doi.org/10.1098/rspa.2004.1325
- Sphalerons in the Skyrme model.Krusch, S., & Sutcliffe, P. (2004). Sphalerons in the Skyrme model. Journal of Physics A: Mathematical and Theoretical, 37(38), 9037-9050. https://doi.org/10.1088/0305-4470/37/38/008
- Domain Wall Networks on Solitons.Sutcliffe, P. (2003). Domain Wall Networks on Solitons. Physical Review D, 68(8). https://doi.org/10.1103/physrevd.68.085004
- Polyhedra in Physics, Chemistry and Geometry.Atiyah, M., & Sutcliffe, P. (2003). Polyhedra in Physics, Chemistry and Geometry. Milan Journal of Mathematics, 71(1), 33-58. https://doi.org/10.1007/s00032-003-0014-1
- Polyhedral Scattering of Fundamental Monopoles.Battye, R., Gibbons, G., Rychenkova, P., & Sutcliffe, P. (2003). Polyhedral Scattering of Fundamental Monopoles. Journal of Mathematical Physics, 44(8), 3532-3542. https://doi.org/10.1063/1.1584208
- Icosahedral Skyrmions.Battye, R., Houghton, C., & Sutcliffe, P. (2003). Icosahedral Skyrmions. Journal of Mathematical Physics, 44(8), 3543-3554. https://doi.org/10.1063/1.1584209
- Stability of Knots in Excitable Media.Sutcliffe, P., & Winfree, A. (2003). Stability of Knots in Excitable Media. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 68(1). https://doi.org/10.1103/physreve.68.016218
- Central Configurations in Three Dimensions.Battye, R., Gibbons, G., & Sutcliffe, P. (2003). Central Configurations in Three Dimensions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 459(2032), 911-943. https://doi.org/10.1098/rspa.2002.1061
- Skyrmed Monopoles.Grigoriev, D., Sutcliffe, P., & Tchrakian, D. (2002). Skyrmed Monopoles. Physics Letters B, 540(1-2), 146-152. https://doi.org/10.1016/s0370-2693%2802%2902141-x
- The Geometry of Point ParticlesAtiyah, M., & Sutcliffe, P. (2002). The Geometry of Point Particles. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 458(2021), 1089-1115. https://doi.org/10.1098/rspa.2001.0913
- Stable Skyrmions in Two-Component Bose-Einstein Condensates.Battye, R., Cooper, N., & Sutcliffe, P. (2002). Stable Skyrmions in Two-Component Bose-Einstein Condensates. Physical Review Letters, 88(8). https://doi.org/10.1103/physrevlett.88.080401
- Skyrmions, Fullerenes and Rational MapsBattye, R., & Sutcliffe, P. (2002). Skyrmions, Fullerenes and Rational Maps. Reviews in Mathematical Physics, 14(1), 29-85. https://doi.org/10.1142/s0129055x02001065
- Discrete Breathers in Anisotropic Ferromagnetic Spin Chains.Speight, J., & Sutcliffe, P. (2001). Discrete Breathers in Anisotropic Ferromagnetic Spin Chains. Journal of Physics A: Mathematical and Theoretical, 34(49), 10839-10858. https://doi.org/10.1088/0305-4470/34/49/307
- Solitonic Fullerene Structures in Light Atomic Nuclei.Battye, R., & Sutcliffe, P. (2001). Solitonic Fullerene Structures in Light Atomic Nuclei. Physical Review Letters, 86(18), 3989-3992. https://doi.org/10.1103/physrevlett.86.3989
- Soliton Dynamics in 3D Ferromagnets.Ioannidou, T., & Sutcliffe, P. (2001). Soliton Dynamics in 3D Ferromagnets. Physica D: Nonlinear Phenomena, 150(1-2), 120-128. https://doi.org/10.1016/s0167-2789%2800%2900221-9