Staff profile
Overview
Dr Tin Sulejmanpasic
Royal Society URF, Associate Professor Mathematical & Theoretical Particle Physics
Affiliation | Telephone |
---|---|
Royal Society URF, Associate Professor Mathematical & Theoretical Particle Physics in the Department of Mathematical Sciences | +44 (0) 191 33 44156 |
Research interests
- Non-perturbative phenomena in Quantum Field Theories
- QCD, spin systems
- Resurgence and anomaly matching
Publications
Chapter in book
Conference Paper
- Anosova, M., Gattringer, C., Iqbal, N., & Sulejmanpasic, T. (2022, December). Numerical simulation of self-dual U(1) lattice field theory with electric and magnetic matter. Presented at Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021)
- Gattringer, C., Anosova, M., Göschl, D., Sulejmanpasic, T., & Törek, P. (2020, December). Topological terms in abelian lattice field theories. Presented at Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)
Journal Article
- Jacobson, T., & Sulejmanpasic, T. (2024). Canonical quantization of lattice Chern-Simons theory. Journal of High Energy Physics, 2024(11), Article 87. https://doi.org/10.1007/jhep11%282024%29087
- Anber, M. M., Lohitsiri, N., & Sulejmanpasic, T. (2023). Remarks on QCD 4 with fundamental and adjoint matter. Journal of High Energy Physics, 2023(12), Article 63. https://doi.org/10.1007/jhep12%282023%29063
- Jacobson, T., & Sulejmanpasic, T. (2023). Modified Villain formulation of Abelian Chern-Simons theory. Physical Review D, 107(12), Article 125017. https://doi.org/10.1103/physrevd.107.125017
- Fazza, L., & Sulejmanpasic, T. (2023). Lattice quantum Villain Hamiltonians: compact scalars, U(1) gauge theories, fracton models and quantum Ising model dualities. Journal of High Energy Physics, 2023(5), Article 17. https://doi.org/10.1007/jhep05%282023%29017
- Anosova, M., Gattringer, C., & Sulejmanpasic, T. (2022). Self-dual U(1) lattice field theory with a θ-term. Journal of High Energy Physics, 2022(4), Article 120. https://doi.org/10.1007/jhep04%282022%29120
- Lohitsiri, N., & Sulejmanpasic, T. (2022). Comments on QCD3 and anomalies with fundamental and adjoint matter. Journal of High Energy Physics, 2022(10), Article 81. https://doi.org/10.1007/jhep10%282022%29081
- Anosova, M., Gattringer, C., Iqbal, N., & Sulejmanpasic, T. (2022). Phase structure of self-dual lattice gauge theories in 4d. Journal of High Energy Physics, 2022(6), Article 149. https://doi.org/10.1007/jhep06%282022%29149
- Sulejmanpasic, T. (2021). Ising model as a U(1) lattice gauge theory with a θ -term. Physical Review D, 103(3), Article 034512. https://doi.org/10.1103/physrevd.103.034512
- Sulejmanpasic, T., Göschl, D., & Gattringer, C. (2020). First-Principles Simulations of 1+1D Quantum Field Theories at θ=π and Spin Chains. Physical Review Letters, 125(20), Article 201602. https://doi.org/10.1103/physrevlett.125.201602
- Sulejmanpasic, T., Tanizaki, Y., & Ünsal, M. (2020). Universality between vector-like and chiral quiver gauge theories: anomalies and domain walls. Journal of High Energy Physics, 2020(6), Article 173. https://doi.org/10.1007/jhep06%282020%29173
- Sulejmanpasic, T., & Gattringer, C. (2019). Abelian gauge theories on the lattice: θ-Terms and compact gauge theory with(out) monopoles. Nuclear Physics B, 943, https://doi.org/10.1016/j.nuclphysb.2019.114616
- Duan, Z., Gu, J., Hatsuda, Y., & Sulejmanpasic, T. (2019). Instantons in the Hofstadter butterfly: difference equation, resurgence and quantum mirror curves. Journal of High Energy Physics, 2019(1), https://doi.org/10.1007/jhep01%282019%29079
- chains, and generalizations. Physical Review B, 98(11), Article 115126. https://doi.org/10.1103/physrevb.98.115126
- Sulejmanpasic, T., & Tanizaki, Y. (2018). C−P−T anomaly matching in bosonic quantum field theory and spin chains. Physical Review B, 97(14), Article 144201. https://doi.org/10.1103/physrevb.97.144201
- Komargodski, Z., Sulejmanpasic, T., & Ünsal, M. (2018). Walls, anomalies, and deconfinement in quantum antiferromagnets. Physical Review B, 97(5), Article 054418. https://doi.org/10.1103/physrevb.97.054418
- Mathematica ® package. Computer Physics Communications, 228, https://doi.org/10.1016/j.cpc.2017.11.018
- Kozçaz, C., Sulejmanpasic, T., Tanizaki, Y., & Ünsal, M. (2018). Cheshire Cat Resurgence, Self-Resurgence and Quasi-Exact Solvable Systems. Communications in Mathematical Physics, 364(3), https://doi.org/10.1007/s00220-018-3281-y
- Gattringer, C., Göschl, D., & Sulejmanpašić, T. (2018). Dual simulation of the 2d U(1) gauge Higgs model at topological angle θ = π: Critical endpoint behavior. Nuclear Physics B, 935, https://doi.org/10.1016/j.nuclphysb.2018.08.017
- Behtash, A., Dunne, G. V., Schäfer, T., Sulejmanpasic, T., & Ünsal, M. (2018). Critical points at infinity, non-Gaussian saddles, and bions. Journal of High Energy Physics, 2018(6), https://doi.org/10.1007/jhep06%282018%29068
- Sulejmanpasic, T., Shao, H., Sandvik, A. W., & Ünsal, M. (2017). Confinement in the Bulk, Deconfinement on the Wall: Infrared Equivalence between Compactified QCD and Quantum Magnets. Physical Review Letters, 119(9), https://doi.org/10.1103/physrevlett.119.091601
- Gu, J., & Sulejmanpasic, T. (2017). High order perturbation theory for difference equations and Borel summability of quantum mirror curves. Journal of High Energy Physics, 2017(12), https://doi.org/10.1007/jhep12%282017%29014
- Sulejmanpasic, T. (2017). Global Symmetries, Volume Independence, and Continuity in Quantum Field Theories. Physical Review Letters, 118(1), Article 011601. https://doi.org/10.1103/physrevlett.118.011601
- Behtash, A., Dunne, G. V., Schäfer, T., Sulejmanpasic, T., & Ünsal, M. (2017). Toward Picard–Lefschetz theory of path integrals, complex saddles and resurgence. Annals of mathematical sciences and applications, 2(1), https://doi.org/10.4310/amsa.2017.v2.n1.a3
- Bruckmann, F., Gattringer, C., Kloiber, T., & Sulejmanpasic, T. (2016). Two-dimensional O(3) model at nonzero density: From dual lattice simulations to repulsive bosons. Physical Review D, 94(11), https://doi.org/10.1103/physrevd.94.114503
- Behtash, A., Dunne, G. V., Schäfer, T., Sulejmanpasic, T., & Ünsal, M. (2016). Complexified Path Integrals, Exact Saddles, and Supersymmetry. Physical Review Letters, 116(1), https://doi.org/10.1103/physrevlett.116.011601
- Bruckmann, F., Gattringer, C., Kloiber, T., & Sulejmanpasic, T. (2015). Dual lattice representations forO(N)andCP(N−1)models with a chemical potential. Physics Letters B, 749, https://doi.org/10.1016/j.physletb.2015.08.015
- Anber, M. M., Poppitz, E., & Sulejmanpašić, T. (2015). Strings from domain walls in supersymmetric Yang-Mills theory and adjoint QCD. Physical Review D, 92(2), https://doi.org/10.1103/physrevd.92.021701
- Behtash, A., Poppitz, E., Sulejmanpasic, T., & Ünsal, M. (2015). The curious incident of multi-instantons and the necessity of Lefschetz thimbles. Journal of High Energy Physics, 2015(11), https://doi.org/10.1007/jhep11%282015%29175
- Bruckmann, F., Gattringer, C., Kloiber, T., & Sulejmanpasic, T. (2015). Grand Canonical Ensembles, Multiparticle Wave Functions, Scattering Data, and Lattice Field Theories. Physical Review Letters, 115(23), https://doi.org/10.1103/physrevlett.115.231601
- Anber, M. M., & Sulejmanpasic, T. (2015). The renormalon diagram in gauge theories on ℝ 3 × S 1 $$ {\mathrm{\mathbb{R}}}^3\times {\mathbb{S}}^1 $$. Journal of High Energy Physics, 2015(1), https://doi.org/10.1007/jhep01%282015%29139
- Behtash, A., Sulejmanpasic, T., Schäfer, T., & Ünsal, M. (2015). Hidden Topological Angles in Path Integrals. Physical Review Letters, 115(4), https://doi.org/10.1103/physrevlett.115.041601
- Bruckmann, F., & Sulejmanpasic, T. (2014). Nonlinear sigma models at nonzero chemical potential: Breaking up instantons and the phase diagram. Physical Review D, 90(10), https://doi.org/10.1103/physrevd.90.105010
- Bruckmann, F., Rödl, R., & Sulejmanpasic, T. (2013). Topological zero modes at nonzero chemical potential. Physical Review D, 88(5), https://doi.org/10.1103/physrevd.88.054501
- Shuryak, E., & Sulejmanpasic, T. (2013). Holonomy potential and confinement from a simple model of the gauge topology. Physics Letters B, 726(1-3), https://doi.org/10.1016/j.physletb.2013.08.014
- Poppitz, E., & Sulejmanpasic, T. (2013). (S)QCD on $ {{\mathbb{R}}^3}\times {{\mathbb{S}}^1} $ : screening of Polyakov loop by fundamental quarks and the demise of semi-classics. Journal of High Energy Physics, 2013(9), https://doi.org/10.1007/jhep09%282013%29128
- Bruckmann, F., Buividovich, P., & Sulejmanpasic, T. (2013). Electric charge catalysis by magnetic fields and a nontrivial holonomy. Physical Review D, 88(4), https://doi.org/10.1103/physrevd.88.045009
- Shuryak, E., & Sulejmanpasic, T. (2012). Chiral symmetry breaking/restoration in a dyonic vacuum. Physical Review D, 86(3), https://doi.org/10.1103/physrevd.86.036001