Skip to main content
Overview

Dr Sunny Cheng

PDRA


Affiliations
Affiliation
PDRA in the Department of Physics

Publications

Conference Paper

Journal Article

  • Efficient search for extremely metal-poor galaxies in the local universe using convolutional neural networks
    Cheng, T.-Y., & Cooke, R. J. (2025). Efficient search for extremely metal-poor galaxies in the local universe using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 540(1), 128-142. https://doi.org/10.1093/mnras/staf690
  • OzDES Reverberation Mapping Program: Stacking analysis with Hβ, Mg ii, and C iv
    Malik, U., Sharp, R., Penton, A., Yu, Z., Martini, P., Tucker, B. E., Davis, T. M., Lewis, G. F., Lidman, C., Aguena, M., Alves, O., Annis, J., Asorey, J., Bacon, D., Brooks, D., Carnero Rosell, A., Carretero, J., Cheng, T. .-Y., da Costa, L. N., Pereira, M. E. S., …Wiseman, P. (2024). OzDES Reverberation Mapping Program: Stacking analysis with Hβ, Mg ii, and C iv. Monthly Notices of the Royal Astronomical Society, 531(1), 163-182. https://doi.org/10.1093/mnras/stae1154
  • Dark Energy Survey Year 6 results: Intra-cluster light from redshift 0.2 to 0.5
    Zhang, Y., Golden-Marx, J. B., Ogando, R. L. C., Yanny, B., Rykoff, E. S., Allam, S., Aguena, M., Bacon, D., Bocquet, S., Brooks, D., Carnero Rosell, A., Carretero, J., Cheng, T. .-Y., Conselice, C., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., Desai, S., Diehl, H. T., …DES Collaboration. (2024). Dark Energy Survey Year 6 results: Intra-cluster light from redshift 0.2 to 0.5. Monthly Notices of the Royal Astronomical Society, 531(1), 510-529. https://doi.org/10.1093/mnras/stae1165
  • Machine Learning methods in Astronomy
    Lieu, M., & Cheng, T.-Y. (2024). Machine Learning methods in Astronomy. Astronomy and computing, 47, Article 100830. https://doi.org/10.1016/j.ascom.2024.100830
  • Lessons learned from the two largest Galaxy morphological classification catalogues built by convolutional neural networks
    Cheng, T.-Y., Domínguez Sánchez, H., Vega-Ferrero, J., Conselice, C., Siudek, M., Aragón-Salamanca, A., Bernardi, M., Cooke, R., Ferreira, L., Huertas-Company, M., Krywult, J., Palmese, A., Pieres, A., Plazas Malagón, A., Carnero Rosell, A., Gruen, D., Thomas, D., Bacon, D., Brooks, D., James, D., …Scarpine, V. (2023). Lessons learned from the two largest Galaxy morphological classification catalogues built by convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 518(2), 2794-2809. https://doi.org/10.1093/mnras/stac3228
  • Galaxy Morphological Classification Catalogue of the Dark Energy Survey Year 3 data with Convolutional Neural Networks
    Cheng, T.-Y., Conselice, C. J., Aragón-Salamanca, A., Aguena, M., Allam, S., Andrade-Oliveira, F., Annis, J., Bluck, A., Brooks, D., Burke, D., Carrasco Kind, M., Carretero, J., Choi, A., Costanzi, M., da Costa, L., Pereira, M., De Vicente, J., Diehl, H., Drlica-Wagner, A., Eckert, K., …To, C. (2021). Galaxy Morphological Classification Catalogue of the Dark Energy Survey Year 3 data with Convolutional Neural Networks. Monthly Notices of the Royal Astronomical Society, 507(3), 4425-4444. https://doi.org/10.1093/mnras/stab2142
  • Beyond the hubble sequence – exploring galaxy morphology with unsupervised machine learning
    Cheng, T.-Y., Huertas-Company, M., Conselice, C. J., Aragón-Salamanca, A., Robertson, B. E., & Ramachandra, N. (2021). Beyond the hubble sequence – exploring galaxy morphology with unsupervised machine learning. Monthly Notices of the Royal Astronomical Society, 503(3), 4446-4465. https://doi.org/10.1093/mnras/stab734