Staff profile
Overview

Affiliation | Telephone |
---|---|
Associate Professor in the Department of Mathematical Sciences |
Research interests
- probability
- statistical mechanics
- approximate sampling
- SUSY methods
Publications
Conference Paper
- Spin systems with hyperbolic symmetry: a surveyBauerschmidt, R., & Helmuth, T. (2022, July 6 – 2022, July 14). Spin systems with hyperbolic symmetry: a survey [Conference paper]. Presented at International Congress of Mathematicians, 2022.
Journal Article
- Directed Spatial Permutations on Asymmetric ToriHammond, A., & Helmuth, T. (in press). Directed Spatial Permutations on Asymmetric Tori. Annals of Probability.
- Percolation transition for random forests in d ⩾ 3Bauerschmidt, R., Crawford, N., & Helmuth, T. (2024). Percolation transition for random forests in d ⩾ 3. Inventiones Mathematicae, 237(2), 445-540. https://doi.org/10.1007/s00222-024-01263-3
- Approximation Algorithms for the Random Field Ising ModelHelmuth, T., Lee, H., Perkins, W., Ravichandran, M., & Wu, Q. (2023). Approximation Algorithms for the Random Field Ising Model. SIAM Journal on Discrete Mathematics, 37(3), 1610-1629. https://doi.org/10.1137/21m1467389
- Efficient sampling and counting algorithms for the Potts model on Zd at all temperaturesBorgs, C., Chayes, J., Helmuth, T., Perkins, W., & Tetali, P. (2023). Efficient sampling and counting algorithms for the Potts model on Zd at all temperatures. Random Structures and Algorithms, 63(1), 130-170. https://doi.org/10.1002/rsa.21131
- Finite-size scaling, phase coexistence, and algorithms for the random cluster model on random graphsHelmuth, T., Jenssen, M., & Perkins, W. (2023). Finite-size scaling, phase coexistence, and algorithms for the random cluster model on random graphs. Annales De l’Institut Henri Poincaré, Probabilités Et Statistiques, 59(2), 817-848. https://doi.org/10.1214/22-aihp1263
- Efficient Algorithms for Approximating Quantum Partition Functions at Low TemperatureHelmuth, T., & Mann, R. L. (2023). Efficient Algorithms for Approximating Quantum Partition Functions at Low Temperature. Quantum, 7, 1155. https://doi.org/10.22331/q-2023-10-25-1155
- Correlation decay for hard spheres via Markov chainsHelmuth, T., Perkins, W., & Petti, T. (2022). Correlation decay for hard spheres via Markov chains. Annals of Applied Probability, 32(3), 2063-2082. https://doi.org/10.1214/21-aap1728
- The continuous-time lace expansionBrydges, D. C., Helmuth, T., & Holmes, M. (2021). The continuous-time lace expansion. Communications in Pure and Applied Mathematics, 74(11), 2251-2309. https://doi.org/10.1002/cpa.22021
- The geometry of random walk isomorphism theoremsBauerschmidt, R., Helmuth, T., & Swan, A. (2021). The geometry of random walk isomorphism theorems. Annales De l’Institut Henri Poincaré, Probabilités Et Statistiques, 57(1), 408-454. https://doi.org/10.1214/20-aihp1083
- Efficient Algorithms for Approximating Quantum Partition FunctionsHelmuth, T., & Mann, R. (2021). Efficient Algorithms for Approximating Quantum Partition Functions. Journal of Mathematical Physics, 62(2), Article 022201. https://doi.org/10.1063/5.0013689
- Random spanning forests and hyperbolic symmetryBauerschmidt, R., Crawford, N., Helmuth, T., & Swan, A. (2020). Random spanning forests and hyperbolic symmetry. Communications in Mathematical Physics, 381, 1223-1261. https://doi.org/10.1007/s00220-020-03921-y
- Loop-Erased Random Walk as a Spin System ObservableHelmuth, T., & Shapira, A. (2020). Loop-Erased Random Walk as a Spin System Observable. Journal of Statistical Physics, 181(4), 1306-1322. https://doi.org/10.1007/s10955-020-02628-7