Skip to main content

Molecular and Nanoscale Electronics

Diagram of Molecular and Nanoscale Electronics

Molecular (nanoscale) electronics is attracting great attention due to potential applications in future sensor devices, computing technology and related fields. The work in the Bryce group is highly interdisciplinary involving close collaboration with experimentalists (Universities of Liverpool, Bern, Basel, Madrid) and theoreticians (University of Lancaster). In this context we are developing monodisperse oligomers which are ca. 2-10 nm in length ("molecular wires") comprising conjugated backbones with terminal substituents (e.g. thiol, pyridyl) which assemble onto metal electrodes to provide metal | molecule | metal junctions. These are oligo(aryleneethynylene) derivatives,1 e.g. molecule 6,  tolane derivatives,2 oligoyne derivatives 73  and oligofluorene derivatives4 for probing the electrical properties of single molecules. We have also designed and synthesised molecules to bridge silicon nanogaps.5

Related projects probe charge transport through oligoyne systems end-capped with donor and acceptor units;6 molecule 8 is a prototype. Oligofluorene bridges have been probed as molecular wires in molecules such as 9 (with Dirk Guldi, University of Erlangen-Nurnberg).7 A wide range of techniques are applied to the study of these molecules, including cyclic voltammetry, spectroelectrochemistry, steady-state and time-resolved photolysis, X-ray crystallography and EPR spectroscopy.

  1. W. Haiss, C. Wang, I. Grace, A. S. Batsanov, D. J. Schiffrin, S. J. Higgins, M. R. Bryce, C. J. Lambert, R. J. Nichols, Nature Materials 2006, 5, 995; R. Huber, M. T. Gonzalez, S. Wu, M. Langer, S. Grunder, V. Horhoiu, M. Mayor, M. R. Bryce, C. Wang, R. Jitchati, C. Schoenenberger, M. Calame, J. Am. Chem. Soc. 2008, 130, 1080; C. Wang, M. R. Bryce, J. Gigon, G. J. Ashwell, I. Grace, C. J. Lambert, J. Org. Chem. 2008, 73, 4810; S. Martin, I. Grace, M. R. Bryce, C. Wang, R. Jitchati, A. S. Batsanov, S. J. Higgins, C. J. Lambert, R. J. Nichols, J. Am. Chem. Soc. 2010, 132, 9157-9164.
  2. W. Hong, D. Z. Manrique, P. M. García, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292.
  3. C. Wang, A. S. Batsanov, M. R. Bryce, S. Martin, R. J. Nichols, S. J. Higgins, V. M. Garcia-Suarez, C. J. Lambert, J. Am. Chem. Soc. 2009, 131, 15647.
  4. E. Leary, M. T. González, C. van der Pol, M. R. Bryce, S. Fillipone, N. Martín, G. Rubio-Bollinger, N. Agrait, Nano Lett. 2011, 11, 2236-2241.
  5. G. J. Ashwell, L. J. Phillips, B. J. Robinson, B. Urasinska-Wojcik, C. J. Lambert, I. M. Grace, M. R. Bryce, R. Jitchati, M. Tavasli, T. I. Cox, I. C. Sage, R. P. Tuffin, S. Ray, ACS Nano 2010, 4, 7401-7406.
  6. C. Wang, L.-O. Palsson, A. S. Batsanov, M. R. Bryce, J. Am. Chem. Soc. 2006, 128, 3789; L.-O. Pålsson, C. Wang, A. S. Batsanov, S. M. King, A. Beeby, A. P. Monkman, M. R. Bryce, Chem. Eur. J. 2010, 16, 1470-1479.
  7. M. Wielopolski, G. de Miguel Rojas, C. Van der Pol, L. Brinkhaus, G. Katsukis, M. R. Bryce, T. Clark, D. M. Guldi, ACS Nano 2010, 4, 6449-6462.