Staff profile
Overview
https://internal.durham.ac.uk/images/mathematical.sciences/peoplepics/AlparMeszaros.JPG
Alpár Mészáros
3H/4H Course Director, Assistant Professor, Analysis & Partial Differential Equations
PhD Université Paris-Sud, Orsay
Affiliation | Room number | Telephone |
---|---|---|
3H/4H Course Director, Assistant Professor, Analysis & Partial Differential Equations in the Department of Mathematical Sciences | MCS3065 | +44 (0) 191 33 42874 |
Research interests
- Calculus of variations
- Nonlinear PDEs
- Optimal mass transport
- Mean field games
Research groups
- Pure Mathematics: Analysis
Publications
Journal Article
- Ambrose, David M. & Mészáros, Alpár R. (Accepted). Well-posedness of mean field games master equations involving non-separable local Hamiltonians. Transactions of the American Mathematical Society
- Gangbo, Wilfrid, Mészáros, Alpár R., Mou, Chenchen & Zhang, Jianfeng (2022). Mean field games master equations with nonseparable Hamiltonians and displacement monotonicity. The Annals of Probability 50(6): 2178-2217.
- Griffin-Pickering, Megan & Mészáros, Alpár R. (2022). A variational approach to first order kinetic Mean Field Games with local couplings. Communications in Partial Differential Equations 47(10): 1945-2022.
- Gangbo, Wilfrid & Mészáros, Alpár R. (2022). Global Well‐Posedness of Master Equations for Deterministic Displacement Convex Potential Mean Field Games. Communications on Pure and Applied Mathematics 75(12): 2685-2801.
- Kwon, Dohyun & Mészáros, Alpár Richárd (2021). Degenerate nonlinear parabolic equations with discontinuous diffusion coefficients. Journal of the London Mathematical Society 104(2): 688-746.
- Jacobs, Matt, Kim, Inwon & Mészáros, Alpár R. (2021). Weak Solutions to the Muskat Problem with Surface Tension Via Optimal Transport. Archive for Rational Mechanics and Analysis 239(1): 389–430.
- Graber, P. Jameson, Mészáros, Alpár R., Silva, Francisco J. & Tonon, Daniela (2019). The planning problem in mean field games as regularized mass transport. Calculus of Variations and Partial Differential Equations 58(3): 115.
- Kim, Inwon & Mészáros, Alpár Richárd (2018). On nonlinear cross-diffusion systems: an optimal transport approach. Calculus of Variations and Partial Differential Equations 57(3): 79.
- Mészáros, Alpár Richárd & Silva, Francisco J. (2018). On the Variational Formulation of Some Stationary Second-Order Mean Field Games Systems. SIAM Journal on Mathematical Analysis 50(1): 1255-1277.
- Jameson Graber, P. & Mészáros, Alpár R. (2018). Sobolev regularity for first order mean field games. Annales de l'Institut Henri Poincaré C, Analyse non linéaire 35(6): 1557-1576.
- Cardaliaguet, Pierre, Mészáros, Alpár R. & Santambrogio, Filippo (2016). First Order Mean Field Games with Density Constraints: Pressure Equals Price. SIAM Journal on Control and Optimization 54(5): 2672-2709.
- Di Marino, Simone & Mészáros, Alpár Richárd (2016). Uniqueness issues for evolution equations with density constraints. Mathematical Models and Methods in Applied Sciences 26(09): 1761-1783.
- Mészáros, Alpár Richárd & Santambrogio, Filippo (2016). Advection-diffusion equations with density constraints. Analysis & PDE 9(3): 615-644.
- De Philippis, Guido, Mészáros, Alpár Richárd, Santambrogio, Filippo & Velichkov, Bozhidar (2016). BV Estimates in Optimal Transportation and Applications. Archive for Rational Mechanics and Analysis 219(2): 829-860.
- Mészáros, Alpár Richárd & Silva, Francisco J. (2015). A variational approach to second order mean field games with density constraints: The stationary case. Journal de Mathématiques Pures et Appliquées 104(6): 1135-1159.
Supervision students
Guy Parker
1P