Skip to main content
Overview

Professor Andrew Lobb

Professor


Affiliations
AffiliationTelephone
Professor in the Department of Mathematical Sciences

Research interests

  • Low dimensional topology.

Publications

Journal Article

  • Square pegs between two graphs
    Greene, J. E., & Lobb, A. (in press). Square pegs between two graphs. Commentarii Mathematici Helvetici: A Journal of the Swiss Mathematical Society.
  • Squeezed knots
    Feller, P., Lewark, L., & Lobb, A. (2024). Squeezed knots. Quantum Topology. Advance online publication. https://doi.org/10.4171/qt/187
  • On the values taken by slice torus invariants
    FELLER, P., LEWARK, L., & LOBB, A. (2023). On the values taken by slice torus invariants. Mathematical Proceedings of the Cambridge Philosophical Society, 176(1), 55-63. https://doi.org/10.1017/s0305004123000403
  • Almost positive links are strongly quasipositive
    Feller, P., Lewark, L., & Lobb, A. (2023). Almost positive links are strongly quasipositive. Mathematische Annalen, 385(1-2), 481-510. https://doi.org/10.1007/s00208-021-02328-x
  • Cyclic quadrilaterals and smooth Jordan curves
    Greene, J. E., & Lobb, A. (2023). Cyclic quadrilaterals and smooth Jordan curves. Inventiones Mathematicae, 234(3), 931–935. https://doi.org/10.1007/s00222-023-01212-6
  • A calculus for flow categories
    Lobb, A., Orson, P., & Schuetz, D. (2022). A calculus for flow categories. Advances in Mathematics, 409(Part B), Article 108665. https://doi.org/10.1016/j.aim.2022.108665
  • Khovanov homotopy calculations using flow category calculus
    Lobb, A., Orson, P., & Schuetz, D. (2020). Khovanov homotopy calculations using flow category calculus. Experimental Mathematics, 29(4), 475-500. https://doi.org/10.1080/10586458.2018.1482805
  • Threaded Rings that Swim in Excitable Media
    Cincotti, A., Maucher, F., Evans, D., Chapin, B. M., Horner, K., Bromley, E., Lobb, A., Steed, J. W., & Sutcliffe, P. (2019). Threaded Rings that Swim in Excitable Media. Physical Review Letters, 123(25), Article 258102. https://doi.org/10.1103/physrevlett.123.258102
  • An sl(n) stable homotopy type for matched diagrams
    Jones, D., Lobb, A., & Schuetz, D. (2019). An sl(n) stable homotopy type for matched diagrams. Advances in Mathematics, 356, Article 106816. https://doi.org/10.1016/j.aim.2019.106816
  • Framed cobordism and flow category moves
    Lobb, A., Orson, P., & Schuetz, D. (2018). Framed cobordism and flow category moves. Algebraic and Geometric Topology, 18, 2821-2858. https://doi.org/10.2140/agt.2018.18.2821
  • Morse moves in flow categories
    Lobb, A., Jones, D., & Schuetz, D. (2017). Morse moves in flow categories. Indiana University Mathematics Journal, 66(5), 1603-1657. https://doi.org/10.1512/iumj.2017.66.6136
  • A Khovanov stable homotopy type for colored links
    Lobb, A., Orson, P., & Schuetz, D. (2017). A Khovanov stable homotopy type for colored links. Algebraic and Geometric Topology, 17(2), 1261-1281. https://doi.org/10.2140/agt.2017.17.1261

Supervision students