Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1191
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences |
Research interests
- Low dimensional topology.
Publications
Journal Article
- Square pegs between two graphsGreene, J. E., & Lobb, A. (in press). Square pegs between two graphs. Commentarii Mathematici Helvetici: A Journal of the Swiss Mathematical Society.
- Squeezed knotsFeller, P., Lewark, L., & Lobb, A. (2024). Squeezed knots. Quantum Topology. Advance online publication. https://doi.org/10.4171/qt/187
- On the values taken by slice torus invariantsFELLER, P., LEWARK, L., & LOBB, A. (2023). On the values taken by slice torus invariants. Mathematical Proceedings of the Cambridge Philosophical Society, 176(1), 55-63. https://doi.org/10.1017/s0305004123000403
- Almost positive links are strongly quasipositiveFeller, P., Lewark, L., & Lobb, A. (2023). Almost positive links are strongly quasipositive. Mathematische Annalen, 385(1-2), 481-510. https://doi.org/10.1007/s00208-021-02328-x
- Cyclic quadrilaterals and smooth Jordan curvesGreene, J. E., & Lobb, A. (2023). Cyclic quadrilaterals and smooth Jordan curves. Inventiones Mathematicae, 234(3), 931–935. https://doi.org/10.1007/s00222-023-01212-6
- A calculus for flow categoriesLobb, A., Orson, P., & Schuetz, D. (2022). A calculus for flow categories. Advances in Mathematics, 409(Part B), Article 108665. https://doi.org/10.1016/j.aim.2022.108665
- Khovanov homotopy calculations using flow category calculusLobb, A., Orson, P., & Schuetz, D. (2020). Khovanov homotopy calculations using flow category calculus. Experimental Mathematics, 29(4), 475-500. https://doi.org/10.1080/10586458.2018.1482805
- Threaded Rings that Swim in Excitable MediaCincotti, A., Maucher, F., Evans, D., Chapin, B. M., Horner, K., Bromley, E., Lobb, A., Steed, J. W., & Sutcliffe, P. (2019). Threaded Rings that Swim in Excitable Media. Physical Review Letters, 123(25), Article 258102. https://doi.org/10.1103/physrevlett.123.258102
- An sl(n) stable homotopy type for matched diagramsJones, D., Lobb, A., & Schuetz, D. (2019). An sl(n) stable homotopy type for matched diagrams. Advances in Mathematics, 356, Article 106816. https://doi.org/10.1016/j.aim.2019.106816
- Framed cobordism and flow category movesLobb, A., Orson, P., & Schuetz, D. (2018). Framed cobordism and flow category moves. Algebraic and Geometric Topology, 18, 2821-2858. https://doi.org/10.2140/agt.2018.18.2821
- Morse moves in flow categoriesLobb, A., Jones, D., & Schuetz, D. (2017). Morse moves in flow categories. Indiana University Mathematics Journal, 66(5), 1603-1657. https://doi.org/10.1512/iumj.2017.66.6136
- A Khovanov stable homotopy type for colored linksLobb, A., Orson, P., & Schuetz, D. (2017). A Khovanov stable homotopy type for colored links. Algebraic and Geometric Topology, 17(2), 1261-1281. https://doi.org/10.2140/agt.2017.17.1261