Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1455
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences | |
Biophysical Sciences Institute Executive Board in the Biophysical Sciences Institute | |
Professor in the Biophysical Sciences Institute |
Research interests
- mathematical physics
- nonlinear systems
- The Skyrme model in 2 and 3 dimensions
- Solitons in inhomogeneous systems
- Electron-phonon interaction in nano-systems
Esteem Indicators
- 2000: 'National and International Collaboration': 'International Collaboration with L. Brizhik and A. Eremko both from Kiev.'
Publications
Conference Paper
- Ratchet effect of Davydov's solitons in nonlinear low-dimensional nanosystems.Brizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2010). Ratchet effect of Davydov’s solitons in nonlinear low-dimensional nanosystems. In International Journal of Quantum Chemistry (pp. 25-37). Wiley. https://doi.org/10.1002/qua.22083
- Davydov's solitons in zigzag carbon nanotubesBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2009). Davydov’s solitons in zigzag carbon nanotubes. In Proceedings of the NATO ARW “Molecular Self-Organization in Micro-, Nano-, and Macro-Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins”, Dedicated to Alexander S. Davydov’s 95th Birthday (pp. 11-24). Wiley. https://doi.org/10.1002/qua.22291
- Some Properties of SolitonsBrizhik, L., Eremko, A., Ferreira, L., Piette, B., & Zakrzewski, W. (2009). Some Properties of Solitons. In N. Russo, V. . I. Antonchenko, & E. S. Kryachko (Eds.), SelfOrganization of Molecular Systems : from molecules and clusters to nanotubes and proteins (pp. 103-121). Springer Verlag. https://doi.org/10.1007/978-90-481-2590-6_6
- Some Aspects of Dynamics of Topological SolitonsPiette, B., & Zakrzewski, W. (2008). Some Aspects of Dynamics of Topological Solitons. In Quantum, Super and Twistors..
- Effects of Periodic electromagnetic Field on Charge Transport in
MacromoleculesBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2008). Effects of Periodic electromagnetic Field on Charge Transport in Macromolecules. Electromagnetic Biology & Medicine, 28, 15-27.
- Dynamics of the topological structures in inhomogeneous mediaFerreira, L., Piette, B., & Zakrzewski, W. (2008). Dynamics of the topological structures in inhomogeneous media. In Journal of Physics: Conference Series. The 5th International Symposium on Quantum Theory and Symmetries: 22–28 July 2007, Valladolid, Spain. IOP Publishing. https://doi.org/10.1088/1742-6596/128/1/012027
- Scattering of sine-Gordon Kinks and Breathers on a Finite Width
WellPiette, B., & Zakrzewski, W. (2008). Scattering of sine-Gordon Kinks and Breathers on a Finite Width Well. In Proceedings of Dynamic Systems and Applications.
- Mass Terms in the Skyrme ModelKopeliovich, V., Piette, B., & Zakrzewski, W. (2006). Mass Terms in the Skyrme Model. Presented at Quark 2006, St’ Petersbourg, Russia.
- Solitonic Electron States and the Modified non-linear Schrodinger Equation in 2 and more DimensionsZakrzewsk, W., Brizhik, L., Eremko, A., & Piette, B. (2002). Solitonic Electron States and the Modified non-linear Schrodinger Equation in 2 and more Dimensions. Presented at Workshop on Integrable Theories, Solitons and Duality. https://doi.org/10.22323/1.008.0040
- Understanding Skyrmions Using Rational MapsManton, N., & Piette, B. (2001). Understanding Skyrmions Using Rational Maps. In C. Casacuberta (Ed.), Progress in Mathematics (pp. 469-479). Birkhäuser Verlag.
- Nontopological structures in the baby-Skyrme model.Piette, B., & Zakrzewski, W. (2000). Nontopological structures in the baby-Skyrme model. In CRM Series in Math. Physic (pp. 309-312). Springer Verlag.
- Skyrmions from Harmonic MapsIoannidou, T., Piette, B., & Zakrzewski, W. (2000). Skyrmions from Harmonic Maps. Presented at Quark 2000, St Petersburg.
- SU(N) Skyrmions and two dimensional CPN Rational MapsIoannidou, T., Piette, B., & Zakrzewski, W. (1999). SU(N) Skyrmions and two dimensional CPN Rational Maps. Presented at New symmetries and integrable models, Karpacz.
- Three Dimensional Skyrmions and Harmonic MapsIoannidou, T., Piette, B., & Zakrzewski, W. (1999). Three Dimensional Skyrmions and Harmonic Maps. In CRM Proceedings and Lecture Notes.
- Skyrmions and Domain WallsPiette, B., & Zakrzewski, W. (1999). Skyrmions and Domain Walls. In R. MacKenzie & et al. (Eds.), CRM Series in Math. Physics (pp. 187-190). Springer Verlag.
- Low Energy States in the SU(N) Skyrme ModelIoannidou, T., Piette, B., & Zakrzewski, W. (1998). Low Energy States in the SU(N) Skyrme Model. In M. Eliashvili (Ed.), Proceedings of ISPM-98 (pp. 91-123).
- Soliton-like structures in two dimensions and their propertiesPiette, B., & Zakrzewski, W. (1997). Soliton-like structures in two dimensions and their properties. In Reports on Mathematical Physics (pp. 313-340).
- Some Aspects of Soliton Unwindings.Piette, B., & Zakrzewski, W. (1996). Some Aspects of Soliton Unwindings. In B. Jancewicz & J. Sobczyk (Eds.), From Field Theory to Quantum Groups. World Scientific Publishing.
- Scattering of extended structures in (2+1) dimensional models,Piette, B., & Zakrzewski, W. (1995). Scattering of extended structures in (2+1) dimensional models,. In D. Tchrakian (Ed.), Topics in Quantum Field Theory (pp. 78-88). World Scientific Publishing.
- General Structures in (2+1) Dimensional ModelsPiette, B., & Zakrzewski, W. (1994). General Structures in (2+1) Dimensional Models. In K. H. Spatschek & F. G. Mertens (Eds.), Nonlinear Coherent Structures in Physics and Biology (pp. 283-286). Plenum Press.
- Soliton-like Structure in (2+1) DimensionsPiette, B., & Zakrzewski, W. (1993). Soliton-like Structure in (2+1) Dimensions. In P. Christiansen (Ed.), Future Directions of Nonlinear Dynamics in Physical and Biological Systems (pp. 73-76). Plenum Press.
- Extended Structures in (2+1) DimensionsPiette, B., & Zakrzewski, W. (1993). Extended Structures in (2+1) Dimensions. In P. Clarkson (Ed.), Applications of Analytic and Geometric Methods to Nonlinear Differential Equations (pp. 47-64). Kluwer Academic Publishers.
- Conserved Quantities of the Soliton Scatterings in (2+1) DimensionsPiette, B., & Zakrzewski, W. (1993). Conserved Quantities of the Soliton Scatterings in (2+1) Dimensions. In Anales de Fisica, Monografias (pp. 285-288). CIEMAT/RSEF.
- Image analysis with 2D wavelet transform: detection of position orientation and contour of simple objectsAntoine, J., Duval, M., Murenzi, R., & Piette, B. (1992). Image analysis with 2D wavelet transform: detection of position orientation and contour of simple objects. In Y. Meyer (Ed.), Wavelets and their applications (pp. 144-159). Masson and Springer-Verlag.
- Skyrmions in (2+1) dimensionsPeyrard, M., Piette, B., & Zakrzewski, W. (1991). Skyrmions in (2+1) dimensions. Presented at $25^{th}$ International Conference on High Energy Physics.
- Skyrmions and their scattering in (2+1) dimensionsPiette, B., & Zakrzewski, W. (1991). Skyrmions and their scattering in (2+1) dimensions. In P. Garbaczewski & Z. Popowicz (Eds.), Nonlinear Fields: Classical, Random, Semiclassical (pp. 225-243). World Scientific Publishing.
- Skyrmions scattering in (2+1) dimensionsPiette, B., & Zakrzewski, W. (1991). Skyrmions scattering in (2+1) dimensions. In Proceedings of the $25^{th}$ International Conference on High Energy Physics (pp. 325-329). Springer Verlag.
- Interactions of Solitons in (2+1) DimensionsPiette, B., & Zakrzewski, W. (1991). Interactions of Solitons in (2+1) Dimensions. In M. Remoissenet & M. Peyrard (Eds.), Nonlinear Coherent Structures in Physics and Biology (pp. 242-249). Springer-Verlag.
- Some Solutions of the U(N) Sigma ModelsPiette, B. (1988). Some Solutions of the U(N) Sigma Models. In H. Doebner, J. Hennig, & T. Palev (Eds.), Lect. Notes in Physics. Springer Verlag.
- Classical Non-Linear $\sigma$ Models on Grassmann ManifoldsAntoine, J., & Piette, B. (1987). Classical Non-Linear $\sigma$ Models on Grassmann Manifolds (H. Mitter & L. Pittner, Eds.). Springer Verlag.
Journal Article
- Bi-Symmetric Polyhedral Cages with Nearly Maximally Connected Faces and Small HolesPiette, B. (2025). Bi-Symmetric Polyhedral Cages with Nearly Maximally Connected Faces and Small Holes. Symmetry, 17(6), Article 940. https://doi.org/10.3390/sym17060940
- Randomly Formed Polyhedral CagesLukács, Árpád, & Piette, B. M. A. G. (2025). Randomly Formed Polyhedral Cages. Axioms, 14(2), Article 83. https://doi.org/10.3390/axioms14020083
- Bi-Symmetric Polyhedral Cages with Maximally Connected Faces and Small HolesPiette, B., & Lukács, Árpad. (2025). Bi-Symmetric Polyhedral Cages with Maximally Connected Faces and Small Holes. Symmetry, 17(1), Article 101. https://doi.org/10.3390/sym17010101
- Biequivalent Planar GraphsPiette, B. (2024). Biequivalent Planar Graphs. Axioms, 13(7), Article 437. https://doi.org/10.3390/axioms13070437
- The microtubule nucleating factor MACERATOR tethers AUGMIN7 to microtubules and governs phragmoplast architecture.Schmidt-Marcec, S., Parish, A., Smertenko, T., Hickey, M., Piette, B. M. A. G., & Smertenko, A. (2024). The microtubule nucleating factor MACERATOR tethers AUGMIN7 to microtubules and governs phragmoplast architecture. The Plant Cell, 36(4), 1072–1097. https://doi.org/10.1093/plcell/koad304
- An artificial protein cage made from a 12-membered ringStupka, I., Biela, A. P., Piette, B., Kowalczyk, A., Majsterkiewicz, K., Borzęcka-Solarz, K., Naskalska, A., & Heddle, J. G. (2024). An artificial protein cage made from a 12-membered ring. Journal of Materials Chemistry B, 12(2), 436-447. https://doi.org/10.1039/d3tb01659e
- Near-Miss Bi-Homogenous Symmetric Polyhedral CagesPiette, B., & Lukács, Árpad. (2023). Near-Miss Bi-Homogenous Symmetric Polyhedral Cages. Symmetry, 15(9), Article 1804. https://doi.org/10.3390/sym15091804
- Near-Miss Symmetric Polyhedral CagesPiette, B. M. A. G., & Lukács, Árpad. (2023). Near-Miss Symmetric Polyhedral Cages. Symmetry, 15(3), Article 717. https://doi.org/10.3390/sym15030717
- Shape-Morphing of an Artificial Protein Cage with Unusual Geometry Induced by a Single Amino Acid ChangeSharma, M., Biela, A. P., Kowalczyk, A., Borzęcka-Solarz, K., Piette, B. M., Gaweł, S., Bishop, J., Kukura, P., Benesch, J. L., Imamura, M., Scheuring, S., & Heddle, J. G. (2022). Shape-Morphing of an Artificial Protein Cage with Unusual Geometry Induced by a Single Amino Acid Change. ACS Nanoscience Au, 2(5), 404-413. https://doi.org/10.1021/acsnanoscienceau.2c00019
- Artificial Protein Cage with Unusual Geometry and Regularly Embedded Gold NanoparticlesMajsterkiewicz, K., Biela, A. P., Maity, S., Sharma, M., Piette, B. M., Kowalczyk, A., Gaweł, S., Chakraborti, S., Roos, W. H., & Heddle, J. G. (2022). Artificial Protein Cage with Unusual Geometry and Regularly Embedded Gold Nanoparticles. Nano Letters, 22(8), 3187-3195. https://doi.org/10.1021/acs.nanolett.1c04222
- Characterization of near-miss connectivity-invariant homogeneous convex polyhedral cagesPiette, B. M., Kowalczyk, A., & Heddle, J. G. (2022). Characterization of near-miss connectivity-invariant homogeneous convex polyhedral cages. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2260), Article 20210679. https://doi.org/10.1098/rspa.2021.0679
- A Peptide–Nucleic Acid Replicator Origin for LifePiette, B. M., & Heddle, J. G. (2020). A Peptide–Nucleic Acid Replicator Origin for Life. Trends in Ecology and Evolution, 35(5), 397-406. https://doi.org/10.1016/j.tree.2020.01.001
- Long-range donor-acceptor electron transport mediated by α helicesBrizhik, L., Luo, J., Piette, B., & Zakrzewski, W. (2019). Long-range donor-acceptor electron transport mediated by α helices. Physical Review E, 100(6), Article 062205. https://doi.org/10.1103/physreve.100.062205
- An ultra-stable gold-coordinated protein cage displaying reversible assemblyMalay, A. D., Miyazaki, N., Biela, A., Chakraborti, S., Majsterkiewicz, K., Stupka, I., Kaplan, C. S., Kowalczyk, A., Piette, B. M., Hochberg, G. K., Wu, D., Wrobel, T. P., Fineberg, A., Kushwah, M. S., Kelemen, M., Vavpetič, P., Pelicon, P., Kukura, P., Benesch, J. L., … Heddle, J. G. (2019). An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature, 569, 438-442. https://doi.org/10.1038/s41586-019-1185-4
- Directed polaron propagation in linear polypeptides induced by intramolecular vibrations and external electric pulsesLuo, J., & Piette, B. (2018). Directed polaron propagation in linear polypeptides induced by intramolecular vibrations and external electric pulses. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 98(1), Article 012401. https://doi.org/10.1103/physreve.98.012401
- Reciprocal Nucleopeptides as the Ancestral Darwinian Self-ReplicatorBanwell, E. F., Piette, B. M., Taormina, A., & Heddle, J. G. (2018). Reciprocal Nucleopeptides as the Ancestral Darwinian Self-Replicator. Molecular Biology and Evolution, 35(2), 404-416. https://doi.org/10.1093/molbev/msx292
- A generalised Davydov-Scott model for polarons in linear peptide chainsLuo, J., & Piette, B. (2017). A generalised Davydov-Scott model for polarons in linear peptide chains. The European Physical Journal B, 90(8), Article 155. https://doi.org/10.1140/epjb/e2017-80209-2
- Donor-acceptor electron transport mediated by solitonsBrizhik, L., Piette, B., & Zakrzewski, W. (2014). Donor-acceptor electron transport mediated by solitons. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 90(5), Article 052915. https://doi.org/10.1103/physreve.90.052915
- Thermal enhancement and stochastic resonance of polaron ratchetBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2014). Thermal enhancement and stochastic resonance of polaron ratchet. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 89(6), Article 062905. https://doi.org/10.1103/physreve.89.062905
- Phase transition and anisotropic deformations of neutron star matterNelmes, S., & Piette, B. (2012). Phase transition and anisotropic deformations of neutron star matter. Physical Review D, 85(12), Article 123004. https://doi.org/10.1103/physrevd.85.123004
- Spontaneous polaron transport in biopolymersChakrabarti, B., Piette, B., & Zakrzewski, W. (2012). Spontaneous polaron transport in biopolymers. Europhysics Letters, 97(4), Article 47005. https://doi.org/10.1209/0295-5075/97/47005
- Biopolymer hairpin loops sustained by polaronsChakrabarti, B., Piette, B., & Zakrzewski, W. (2012). Biopolymer hairpin loops sustained by polarons. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 86(2), Article 021910. https://doi.org/10.1103/physreve.86.021910
- Skyrmion stars and the multilayered rational map ansatzNelmes, S., & Piette, B. (2011). Skyrmion stars and the multilayered rational map ansatz. Physical Review D, 84(8), Article 085017. https://doi.org/10.1103/physrevd.84.085017
- The Origin of Phragmoplast AsymmetrySmertenko, A. P., Piette, B., & Hussey, P. J. (2011). The Origin of Phragmoplast Asymmetry. Current Biology, 21(22), 1924-1930. https://doi.org/10.1016/j.cub.2011.10.012
- A Compartmental Model Analysis of Integrative and Self-Regulatory Ion Dynamics in Pollen Tube GrowthLiu, J., Piette, B., Deeks, M., Franklin-Tong, V., & Hussey, P. (2010). A Compartmental Model Analysis of Integrative and Self-Regulatory Ion Dynamics in Pollen Tube Growth. PLoS ONE, 5(10), Article e13157. https://doi.org/10.1371/journal.pone.0013157
- Ratchet dynamics of large polarons in asymmetric diatomic molecular chainsBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2010). Ratchet dynamics of large polarons in asymmetric diatomic molecular chains. Journal of Physics: Condensed Matter, 22(15), Article 155105. https://doi.org/10.1088/0953-8984/22/15/155105
- A Thermodynamic Model of Microtubule Assembly and DisassemblyPiette, B., Liu, J., Peeters, K., Smertenko, A., Hawkins, T., Deeks, M., Quinlan, R., Zakrzewski, W., & Hussey, P. (2009). A Thermodynamic Model of Microtubule Assembly and Disassembly. PLoS ONE, 4(8), Article e6378. https://doi.org/10.1371/journal.pone.0006378
- Scattering of sine-Gordon Breathers on a Potential WellPiette, B., & Zakrzewski, W. (2009). Scattering of sine-Gordon Breathers on a Potential Well. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 79(4), Article 046603. https://doi.org/10.1103/physreve.79.046603
- Skyrmion Vibration Modes within the Rational Map AnsatzLin, W., & Piette, B. (2008). Skyrmion Vibration Modes within the Rational Map Ansatz. Physical Review D, 77(12), Article 125028. https://doi.org/10.1103/physrevd.77.125028
- Ratchet behaviour of polarons in molecular chainsBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2008). Ratchet behaviour of polarons in molecular chains. Journal of Physics: Condensed Matter, 20(25). https://doi.org/10.1088/0953-8984/20/25/255242
- Wobbles and other kink-breather solutions of the Sine Gordon modelFerreira, L., Piette, B., & Zakrzewski, W. (2008). Wobbles and other kink-breather solutions of the Sine Gordon model. Physical Review E, 77. https://doi.org/10.1103/physreve.77.036613
- Skyrme Model with Different Mass TermsPiette, B., & Zakrzewski, W. (2008). Skyrme Model with Different Mass Terms. Physical Review D, 77. https://doi.org/10.1103/physrevd.77.074009
- Adiabatic self-trapped states in carbon nanotubesBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2007). Adiabatic self-trapped states in carbon nanotubes. Journal of Physics: Condensed Matter, 19(30). https://doi.org/10.1088/0953-8984/19/30/306205
- Towards Skyrmion Stars: Large Baryon Configurations in the Einstein-Skyrme ModelPiette, B., & Probert, G. (2007). Towards Skyrmion Stars: Large Baryon Configurations in the Einstein-Skyrme Model. Physical Review D, 75. https://doi.org/10.1103/physrevd.75.125023
- Scattering of Sine-Gordon kinks on potential wellsPiette, B., & Zakrzewski, W. (2007). Scattering of Sine-Gordon kinks on potential wells. Journal of Physics A: Mathematical and Theoretical, 40(22), 5995-6010. https://doi.org/10.1088/1751-8113/40/22/016
- Self-trapped electron states in carbon nanotubesBratek, L., Brizhik, L., Eremko, A., Piette, B., Watson, M., & Zakrzewski, W. (2007). Self-trapped electron states in carbon nanotubes. Physica D: Nonlinear Phenomena, 228(2), 130-139. https://doi.org/10.1016/j.physd.2007.02.013
- Dynamical properties of a Soliton in a Potential WellPiette, B., & Zakrzewski, W. (2007). Dynamical properties of a Soliton in a Potential Well. Journal of Physics A: Mathematical and Theoretical, 40(2), 329-346. https://doi.org/10.1088/1751-8113/40/2/011
- Electron self-trapping on a nano-circle.Brizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2006). Electron self-trapping on a nano-circle. Physica D: Nonlinear Phenomena, 218(1), 36-55. https://doi.org/10.1016/j.physd.2006.04.010
- Charge and energy transfer by solitons in low-dimensional nanosystems with helical structureBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2006). Charge and energy transfer by solitons in low-dimensional nanosystems with helical structure. Chemical Physics, 324(1), 259-266. https://doi.org/10.1016/j.chemphys.2006.01.033
- Mass terms in the Skyrme ModelKopeliovich, B., Piette, B., & Zakrzewski, W. (2006). Mass terms in the Skyrme Model. Physical Review D, Particles and Fields, 73(1). https://doi.org/10.1103/physrevd.73.014006
- Scattering of Topological Solitons on Holes and BarriersPiette, B., Zakrzewski, W., & Brand, J. (2005). Scattering of Topological Solitons on Holes and Barriers. Journal of Physics A: Mathematical and General, 38(38), 10403-10412. https://doi.org/10.1088/0305-4470/38/48/011
- Planar Skyrmions: vibrational modes and dynamicsPiette, B., & Ward, R. (2005). Planar Skyrmions: vibrational modes and dynamics. Physica D: Nonlinear Phenomena, 201(1-2), 45-55. https://doi.org/10.1016/j.physd.2004.12.001
- Solitons in alpha-helical proteinsBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2004). Solitons in alpha-helical proteins. Physical Review E, E(70). https://doi.org/10.1103/physreve.70.031914
- Static solutions of a D-dimensional Modified Nonlinear Schroedinger EquationBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2003). Static solutions of a D-dimensional Modified Nonlinear Schroedinger Equation. Nonlinearity, 16(4), 1481-1497. https://doi.org/10.1088/0951-7715/16/4/317
- Spontaneous Localisation of Electrons in Two-dimensional Lattices within the Adiabatic Approximation.Brizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2003). Spontaneous Localisation of Electrons in Two-dimensional Lattices within the Adiabatic Approximation. Journal of Mathematical Physics, 44, 3689-3697. https://doi.org/10.1063/1.1592873
- Spontaneous Localization of Electrons in Lattices with Non-Local Interactions.Brizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2003). Spontaneous Localization of Electrons in Lattices with Non-Local Interactions. Physical Review B, B(68).
- Electron Self-Trapping in Discrete Two-Dimensional Lattices: II. Analytical Study.Brizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2002). Electron Self-Trapping in Discrete Two-Dimensional Lattices: II. Analytical Study. Ukr. Fiz. Journal, 47(9), 890-897.
- Spherically symmetric solutions of the 6th order SU(N) Skyrme modelsFloratos, I., & Piette, B. (2001). Spherically symmetric solutions of the 6th order SU(N) Skyrme models. Journal of Mathematical Physics, 42(12), 5580-5595. https://doi.org/10.1063/1.1415742
- Instantons in 4-dimensional gauged O(5) Skyrme modelsBrihaye, Y., Paturyan, V., Piette, B., & Tchrakian, D. (2001). Instantons in 4-dimensional gauged O(5) Skyrme models. Journal of Mathematical Physics, 42, 4669-4683. https://doi.org/10.1063/1.1396636
- Gravitating monopoloes in SU(3) gauge theoryBrihaye, Y., & Piette, B. (2001). Gravitating monopoloes in SU(3) gauge theory. Physical Review D, D(64).
- Electron Self-Trapping in Discrete Two-Dimensional LatticesBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2001). Electron Self-Trapping in Discrete Two-Dimensional Lattices. Physica D: Nonlinear Phenomena, D(159), 71-90.
- Skyrmions and Rational MapsIoannidou, T., Piette, B., Sutcliffe, P., & Zakrzewski, W. (2001). Skyrmions and Rational Maps. Nonlinearity, 14, Article C1. https://doi.org/10.1088/0951-7715/14/1/101
- Multi-Skyrmion Solutions for the 6th order Skyrme ModelFloratos, I., & Piette, B. (2001). Multi-Skyrmion Solutions for the 6th order Skyrme Model. Physical Review D, D(64).
- Solitonic Electron States in a Discrete Two-Dimensional LatticeBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. J. (2001). Solitonic Electron States in a Discrete Two-Dimensional Lattice. Physica D: Nonlinear Phenomena, 2802, 1-20.
- Spontaneously Localized Electron States in a Discrete Anisotropic Two-Dimensional LatticeBrizhik, L., Eremko, A., Piette, B., & Zakrzewski, W. (2001). Spontaneously Localized Electron States in a Discrete Anisotropic Two-Dimensional Lattice. Physica D: Nonlinear Phenomena, D(159), 71-90.
- Electron Self-Trapping in Anisotropic Two Dimensional LatticesBrizhik, L., Piette, B., & Zakrzewski, W. (2001). Electron Self-Trapping in Anisotropic Two Dimensional Lattices. Ukrainian Journal of Physics, 46(4), 503-511.
- Interaction of Skyrmions with domain wallsKudryavtsev, A., Piette, B., & Zakrzewski, W. (2000). Interaction of Skyrmions with domain walls. Physical Review D, D( 61).
- Static Solutions in the U(1) Gauged Skyrme ModelPiette, B., & Tchrakian, D. (2000). Static Solutions in the U(1) Gauged Skyrme Model. Physical Review D - Particles, Fields, Gravitation and Cosmology, D(62).
- SU(N) Skyrmions and Harmonic Maps,Ioannidou, T., Piette, B., & Zakrzewski, W. (1999). SU(N) Skyrmions and Harmonic Maps,. Journal of Mathematical Physics, 40(12), 6353-6365. https://doi.org/10.1063/1.533097
- Spherically Symmetric Solutions of the SU(N) Skyrme Models,Ioannidou, T., Piette, B., & Zakrzewski, W. (1999). Spherically Symmetric Solutions of the SU(N) Skyrme Models,. Journal of Mathematical Physics, 40, 6223-6233.
- Numerical integration of (2+1) dimensional PDEs for valued functionsPiette, B., & Zakrzewski, W. (1998). Numerical integration of (2+1) dimensional PDEs for valued functions. Journal of Computational Physics, 145(1), 359-381. https://doi.org/10.1006/jcph.1998.6013
- Localized solutions in a 2 dimensional landau-lifshitz model,Piette, B., & Zakrzewski, W. (1998). Localized solutions in a 2 dimensional landau-lifshitz model,. Physica D: Nonlinear Phenomena, D(119), 314-326.
- Solitons of a general gauged S^2 model with a mass term,Piette, B., Bogolubsky, I., & Zakrzewski, W. (1998). Solitons of a general gauged S^2 model with a mass term,. Physics Letters B, B(432), 151-158. https://doi.org/10.1016/s0370-2693%2898%2900646-7
- Metastable stationary solutions of the radial d dimensional sine-Gordon model,Piette, B., & Zakrzewski, W. (1998). Metastable stationary solutions of the radial d dimensional sine-Gordon model,. Nonlinearity, 11(4), 1103-1110. https://doi.org/10.1088/0951-7715/11/4/020
- Skyrmions and domain walls in (2+1) dimensions,Piette, B., Kudryavtsev, A., & Zakrzewski, W. (1998). Skyrmions and domain walls in (2+1) dimensions,. Nonlinearity, 11(4), 783-795. https://doi.org/10.1088/0951-7715/11/4/002
- Mesons, baryons and waves in the baby skyrmion model,Piette, B., Kudryavtsev, A., & Zakrzewski, W. (1998). Mesons, baryons and waves in the baby skyrmion model,. European Physical Journal C: Particles and Fields, C(1), 333-341.
- On the integrability of pure skyrme models in 2 dimensionsLeznov, A., Piette, B., & Zakrzewski, W. (1997). On the integrability of pure skyrme models in 2 dimensions. Journal of Mathematical Physics, 38(38), Article 6. https://doi.org/10.1063/1.532029
- Shrinking of Solitons in the 2+1 Dimensional S2 Sigma ModelPiette, B., & Zakrzewski, W. (1996). Shrinking of Solitons in the 2+1 Dimensional S2 Sigma Model. Nonlinearity, 9, 897-910. https://doi.org/10.1088/0951-7715/9/4/005
- Skyrme-Maxwell Solitons in 2+1 DimensionsPiette, B., Gladikowski, J., & Schroers, B. (1996). Skyrme-Maxwell Solitons in 2+1 Dimensions. Physical Review D, Particles and Fields, D(53), 844-851.
- Skyrmion Dynamics in (2+1) dimensionsPiette, B., & Zakrzewski:, W. (1995). Skyrmion Dynamics in (2+1) dimensions. Chaos, Solitons and Fractals, 5(12), 2495-2508. https://doi.org/10.1016/0960-0779%2894%29e0111-2
- Multisolitons in a two-dimensional Skyrme ModelPiette, B., Schroers, B., & Zakrzewski, W. (1995). Multisolitons in a two-dimensional Skyrme Model. Zeitschrift für Physik C Particles and Fields, C(65), 165-174.
- Dynamics of Baby SkyrmionsPiette, B., Schroers, B., & Zakrzewski, W. (1995). Dynamics of Baby Skyrmions. Nuclear Physics B, B(439), 205-238. https://doi.org/10.1016/0550-3213%2895%2900011-g
- A modified Mottola-Wipf model with sphaleron and instanton fieldsMuller-Kirsten, H., Piette, B., Tchrakian, D., & Zakrzewski, W. (1994). A modified Mottola-Wipf model with sphaleron and instanton fields. Physics Letters B, B(320), 294-298.
- Chern-Simons solitons in a modelPiette, B., Tchrakian, D., & Zakrzewski, W. (1994). Chern-Simons solitons in a model. Physics Letters B, B339, 95-100. https://doi.org/10.1016/0370-2693%2894%2991139-8
- Chern-Simons solitons in a CP1 modelPiette, B., Tchrakian, D., & Zakrzewski, W. (1994). Chern-Simons solitons in a CP1 model. Physics Letters B, B(339), 95-100.
- Some aspects of scattering of skyrmions in (2+1) dimensionsPiette, B., & Zakrzewski, W. (1994). Some aspects of scattering of skyrmions in (2+1) dimensions. Nonlinearity, 7(1), 231-244. https://doi.org/10.1088/0951-7715/7/1/010
- Image Analysis with Two-dimensional Continuous Wavelet TransformAntoine, J., Carrete, P., Murenzi, R., & Piette, B. (1993). Image Analysis with Two-dimensional Continuous Wavelet Transform. Signal Processing, 31, 241-272. https://doi.org/10.1016/0165-1684%2893%2990085-O
- Soliton like behaviour in a modified Sine-Gordon modelPeyrard, M., Piette, B., & Zakrzewski, W. (1993). Soliton like behaviour in a modified Sine-Gordon model. Physica D: Nonlinear Phenomena, D( 64), 355-364.
- Soliton scattering in the CP² modelPiette, B., Rashid, M., & Zakrzewski, W. (1993). Soliton scattering in the CP² model. Nonlinearity, 6, 1077-1090.
- Skyrmion Model in (2+1) Dimensions with Soliton Bound StatesPiette, B., & Zakrzewski, W. (1993). Skyrmion Model in (2+1) Dimensions with Soliton Bound States. Nuclear Physics B, B(393), 65-78. https://doi.org/10.1016/0550-3213%2893%2990237-j
- $\pi$/N Scattering in (2+1) DimensionsKudryavtsev, A., Piette, B., & Zakrzewski, W. (1993). $\pi$/N Scattering in (2+1) Dimensions. Physics Letters A, A( 180), 119-123.
- Soliton-Soliton and Wave-Soliton Collisions in Skyrme-like $\sigma$ ModelsKudryavtsev, A., Piette, B., & Zakrzewski, W. (1993). Soliton-Soliton and Wave-Soliton Collisions in Skyrme-like $\sigma$ Models. Zeitschrift für Physik C Particles and Fields, C( 60), 731-737.
- Solitons Scattering in the Skyrme model in (2+1) Dimensions: 1. Soliton-Soliton CasePeyrard, M., Piette, B., & Zakrzewski, W. (1992). Solitons Scattering in the Skyrme model in (2+1) Dimensions: 1. Soliton-Soliton Case. Nonlinearity, 5(2), 563-583. https://doi.org/10.1088/0951-7715/5/2/012
- Soliton Scattering in the Skyrme model in (2+1) Dimensions: 2. More General SystemsPeyrard, M., Piette, B., & Zakrzewski, W. (1992). Soliton Scattering in the Skyrme model in (2+1) Dimensions: 2. More General Systems. Nonlinearity, 5(2), 585-600. https://doi.org/10.1088/0951-7715/5/2/013
- Models with Solitons in (2+1) DimensionsIzquierdo, J., Piette, B., Rashid, M., & Zakrzewski, W. (1992). Models with Solitons in (2+1) Dimensions. Zeitschrift für Physik C Particles and Fields, C( 53).
- A class of two dimensional models with extended structure solutions.Piette, B., Tchrakian, D., & Zakrzewski, W. (1992). A class of two dimensional models with extended structure solutions. Zeitschrift für Physik C Particles and Fields, 54(3), 497-502. https://doi.org/10.1007/bf01559470
- Solitons - Antisolitons Scattering in (2+1) DimensionsPiette, B., Sutcliffe, P., & Zakrzewski, W. (1992). Solitons - Antisolitons Scattering in (2+1) Dimensions. International Journal of Modern Physics C, C( 3), 637-660.
- A class of N dimensional models with extended structure solutionsChakrabarti, A., Piette, B., Tchrakian, D., & Zakrzewski, W. (1992). A class of N dimensional models with extended structure solutions. Zeitschrift für Physik C Particles and Fields, C( 56), 461-467.
- Finite energy solutons for (1+1)‐dimensional σ models.Piette, B., & Zakrzewski, W. (1989). Finite energy solutons for (1+1)‐dimensional σ models. Journal of Mathematical Physics, 31, 916-923. https://doi.org/10.1063/1.528772
- Some Classes of General Solutions of the U(N) Chiral $\sigma$ Models in two DimensionsPiette, B., & Zakrzewski, W. (1989). Some Classes of General Solutions of the U(N) Chiral $\sigma$ Models in two Dimensions. Journal of Mathematical Physics, 30, 2233-2237. https://doi.org/10.1063/1.528548
- On stability of solutions of theU(N) chiral model in two dimensions.Piette, B., Stokoe, I., & Zakrzewski, W. (1988). On stability of solutions of theU(N) chiral model in two dimensions. Zeitschrift für Physik C Particles and Fields, 37(3), 449-455. https://doi.org/10.1007/bf01578140
- Solutions of the U(N) $\sigma$ Models with the Wess-Zumino TermPiette, B., Zait, R., & Zakrzewski, W. (1988). Solutions of the U(N) $\sigma$ Models with the Wess-Zumino Term. Zeitschrift für Physik C Particles and Fields, 39(3), 359-364. https://doi.org/10.1007/bf01548285
- Solutions of Minkowskian $\sigma$ Models on Hyperbolic Complex Grassmann Manifolds.Lambert, D., & Piette, B. (1988). Solutions of Minkowskian $\sigma$ Models on Hyperbolic Complex Grassmann Manifolds. Classical and Quantum Gravity, 5(2), 307-319. https://doi.org/10.1088/0264-9381/5/2/010
- Explicit Solutions of Grassmannian $\sigma$ ModelsPiette, B. (1988). Explicit Solutions of Grassmannian $\sigma$ Models. Journal of Mathematical Physics, 29, 2190-2196. https://doi.org/10.1063/1.528147
- Solution of Euclidean $\sigma$ Models on Non-Compact Grassmann ManifoldsAntoine, J., & Piette, B. (1988). Solution of Euclidean $\sigma$ Models on Non-Compact Grassmann Manifolds. Journal of Mathematical Physics, 29(7), 1687-1697. https://doi.org/10.1063/1.527917
- Solutions of the supersymmetric U(N) $\sigma$ Models with the Wess-Zumino-Witten TermPiette, B., Zait, R., & Zakrzewski, W. (1988). Solutions of the supersymmetric U(N) $\sigma$ Models with the Wess-Zumino-Witten Term. Zeitschrift für Physik C Particles and Fields, C( 44).
- General Classical Solutions of the U(3) and U(4) Chiral $\sigma$ Models in two DimensionsPiette, B., & Zakrzewski, W. (1988). General Classical Solutions of the U(3) and U(4) Chiral $\sigma$ Models in two Dimensions. Nuclear Physics B, B(300). https://doi.org/10.1016/0550-3213%2888%2990594-9
- Properties of Classical Solutions of the U(N) Chiral $\sigma$Models in two DimensionsPiette, B., & Zakrzewski, W. (1988). Properties of Classical Solutions of the U(N) Chiral $\sigma$Models in two Dimensions. Nuclear Physics B, B(300). https://doi.org/10.1016/0550-3213%2888%2990595-0
- Spectrum-generating algebras for the supersymmetric Morse and Pöschl-Teller Hamiltonians.Piette, B., & Vinet, L. (1987). Spectrum-generating algebras for the supersymmetric Morse and Pöschl-Teller Hamiltonians. Physics Letters A, A(125), 380-384. https://doi.org/10.1016/0375-9601%2887%2990165-4
- Classical Non-Linear $\sigma$ Models on Grassmann Maniflods of Compact or Non-Compact typeAntoine, J., & Piette, B. (1987). Classical Non-Linear $\sigma$ Models on Grassmann Maniflods of Compact or Non-Compact type. Journal of Mathematical Physics, 28, 2753-2762. https://doi.org/10.1063/1.527723