Staff profile
Affiliation | Room number | Telephone |
---|---|---|
Professor in the Department of Engineering | E483 Christopherson (temporary E116) | +44 (0) 191 33 42527 |
Member of the Centre for Molecular and Nanoscale Electronics | ||
Member of the Centre for Communications Systems |
Biography
Short Bio
Dr Balocco is an Assistant Professor in Electronics in the School of Engineering and Computing Sciences at Durham University, appointed in November 2011. This position follows an appointment as a Research Associate at School of Electrical and Electronic Engineering at the University of Manchester. His research interests have included transport phenomena in self-assembled quantum dots, novel nanodevice architecture and circuit in organic and metal-oxide thin films, ultra-fast nanodevices for THz applications and large-area micro- and nano-fabrication techniques. More recently, his interest focuses on the interaction of thermal radiation with semiconductor nanodevices with applications envisaged in THz imaging and energy harvesting.
Converting radiant heat into electrical power
It is well known that every hot object radiates a great deal of energy in the form of far- and mid-infrared radiation. Battery chargers, heat from industrial machinery, domestic appliances and even the human body, all generate a large amount of this “low grade” –or wasted– energy; even a considerable part of the solar spectrum lies within this frequency region. A strong research and development effort, as well as a large injection of capital, has been made in order to envisage an effective way to harvest this energy with no CO2 expenditure. Unfortunately, current solid-state solar technology –namely photovoltaics– and thermophotovoltaics are unable to capture efficiently the energy radiated in the mid-infrared, and below, due to the physical limitations imposed by the semiconductors’ energy gaps used in their manufacturing. Although some successful result has been reported with thermoelectric devices, their efficiency is too low to be considered as a viable technology for energy harvesting [6] and the required materials, such as bismuth telluride (Bi2Te3), often pose environmental risks.
New devices based on the rectenna paradigm are quickly gaining acceptance as viable solutions for scavenging electromagnetic radiation. This idea is not new: it was initially proposed by Bailey in the early 70’s for direct conversion of sunlight as an alternative to solar cells. However, this approach relies on the availability of low-cost rectifiers –namely diodes– which can operate at very-high speed with very-low threshold voltage, which can be easily integrated with optical antennas. Due to the limited technology available at the time, the subject did not receive much attention from either the scientific community or industry.
The net power radiated per unit area by a hot body J at an absolute temperature T to a medium at room temperature T0 obeys the Stefan-Boltzmann law: J = σε(T4 -T0 4) where σ is the Stefan-Boltzmann constant and ε the body emissivity, the latter can often be approximated to 1 if the body surface is properly treated. The amount of available power is startling: an object at a temperature of 600 °C radiates 33 kW/m2, while an adult human body approximately 100 W. Obviously, not all the radiated power can be converted into useable electric power, and the theoretical efficiency limit will be investigated in WP4. The frequency spectrum emitted by a hot body is well described by Planck’s law of black-body radiation. A remarkable consequence, Wien’s displacement law, states that the frequency at which the power density is at a maximum is fmax = T × 58.8 GHz/K, where T is the body temperature in Kelvin. In the temperature range of interest, 300-600 °C, fmax ranges approximately between 30 and 50 THz.
We recentely demonstrated a working prototype based on novel ultrafast nanodiodes coupled to infrared microantennas, which we fabricate in the electronic group clearoom (see figure): Y. Pan et al., "Micro rectennas: Brownian ratchets for thermal-energy harvesting", Appl. Phys. Lett. 105, 253901 (2014). Apart from being the first group to clearly demonstrate the convertion of radiant energy to dc power, we also proposed a model based on Brownian ratchets, which correctly accounts for the incoherent nature of thermal radiation.
Projects with the automotive industry are currently ongoing, aiming to recover efficiently the power lost as heat.
Prospective PhD students are welcome to get in touch directly for further information and for discussing funding opportunities.
Teaching
- ENGI2161 L2 Sensors and Actuators
- ENGI3361 L3 Electronics Circuits
- ENGI3331 L3 RF Engineering
- ENGI3351 L3 Design
Research Grants
Current
- (PI) EPSRC EP/N021258/1 “Nano-rectennas for heat-to-electricity conversion”, led by Durham University in collaboration with the University of Manchester. Grant value £712,468; Durham share £354,129. Start date 8/8/2016; end date 7/8/2019.
- (PI) Royal Academy of Engineering Distinguished Visiting Fellowships DVF1415/2/95 “Tamm plasmon based optoelectronic devices”. Grant value £6,000. Start date 23/6/2015; end date 24/12/2015.
- (PI) Thermal Energy Recovery From Combustion Engine Exhaust Pipes, EPSRC, £22k, 2014-06-26 - 2014-12-24
- (CO-I) NOTEDEV ITN 2013, European Commission, £700k 2013-10-01 - 2017-09-30
- (CO-I) Sensor Array for Terahertz Imaging in Non-destructive test (SATIN), TSB, £27k, 2014-10-01 - 2015-07-31
- (PI) Electronic nanodevices for energy harvesting: a novel approach to thermal energy conversion, EPSRC, £98k, 2013-06-26 - 2014-06-25
Research interests
- Rectennas for Energy Harvesting
- THz technology
- THz imaging
- Semiconductor devices
- Ultra-fast electronic transport mechanisms
Publications
Conference Paper
- Hajji, M., Pan, Y., Hammler, J., Zeze, D., Balocco, C., & Gallant, A. (in press). Microfabrication of SU-8 Fresnel lenses for THz imaging. In Proc. SPIE 9747. https://doi.org/10.1117/12.2208664
- Stefanova, P., Hammler, J., Klein, A., Gallant, A., & Balocco, C. (in press). Polymer-Based Micro-Golay Cells For THz Detection.
- Hajji, M., Zeze, D., Balocco, C., & Gallant, A. J. (2016). Artificial Microstructured Dielectric Layers for Terahertz Applications.
- Klein, A. K., Hammler, J. M., Zeze, D., Balocco, C., & Gallant, A. J. (2016). Photonic-Crystal Based Enhancement Of Terahertz Spectroscopy In Microfluidic Cells.
- Etor, D., Dodd, L. E., Wood, D., & Balocco, C. (2016). Metal-Insulator-Metal Diodes Fabricated on Flexible Substrates.
- Etor, D., Dodd, L. E., Wood, D., & Balocco, C. (2016). Enhanced Narrow-Band Operation of Ultra-Fast Rectennas.
- Klein, A. K., Zeze, D., Balocco, C., & Gallant, A. (2016). Switchable Spoof Surface Plasmon Polariton Slow Light Structures.
- Pan, Y., Rosamond, M., McDonald, A., Partridge, T., Cartwright, D., Linfield, E., …Balocco, C. (2015). Design and performance of micro-rectenna arrays for thermal energy harvesting. In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (1-2). https://doi.org/10.1109/irmmw-thz.2015.7327724
- Etor, D., Dodd, L., Wood., D., & Balocco, C. (2015). High-frequency metal-insulator-metal (MIM) diodes for thermal radiation harvesting. In 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015. https://doi.org/10.1109/irmmw-thz.2015.7327649
- Hammler, J., Pan, Y., Gallant, A., & Balocco, C. (2015). 3D polymer structures with variable permittivity at terahertz frequencies. In 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 23-28 August 2015, Hong Kong (1-2). https://doi.org/10.1109/irmmw-thz.2015.7327458
- Hammler, J., Gallant, A., & Balocco, C. (2015). Simple de-embedding and simulation technique to find permittivity with a THz vector network analyser. In 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 23-28 August 2015, Hong Kong (1-2). https://doi.org/10.1109/irmmw-thz.2015.7327822
- Hill, C., Balocco, C., Wood, D., & Gallant, A. (2015). Free standing metal aperture array acting as a variable bandpass filter in the THz region. In 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC 2015) Proceedings of a meeting held 16-24 May 2015, Gran Canaria, Spain (1-1). https://doi.org/10.1109/ursi-at-rasc.2015.7302883
- Klein, A., Pan, Y., Balocco, C., Zeze, D., & Gallant, A. (2015). Micro fabricated spoof surface plasmon polariton structures for THz applications. . https://doi.org/10.1109/irmmw-thz.2015.7327855
- Etor, D., Dodd, L., Wood, D., & Balocco, C. (2015). Novel low-cost ultra-high-speed diodes for electromagnetic energy harvesting. In 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC 2015) Proceedings of a meeting held 16-24 May 2015, Gran Canaria, Spain (1-1). https://doi.org/10.1109/ursi-at-rasc.2015.7302973
- Hammler, J., Gallant, A., & Balocco, C. (2015). Free-space material characterisation at terahertz frequencies using a vector network analyser. . https://doi.org/10.1109/ursi-at-rasc.2015.7302827
- Balocco, C., Pan, Y., Rosamond, M., & Linfield, E. (2015). Design and performance of a micro-rectenna focal plane array for thermal energy harvesting. In 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC 2015) Proceedings of a meeting held 16-24 May 2015, Gran Canaria, Spain (1-1). https://doi.org/10.1109/ursi-at-rasc.2015.7302974
- Etor, D., Dodd, L., Wood, D., & Balocco, C. (2015). Impedance matching at THz frequencies: Optimizing power transfer in rectennas. In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015. https://doi.org/10.1109/irmmw-thz.2015.7327776
- Hill, C., Klein, A., Balocco, C., Wood, D., & Gallant, A. (2015). Effect of Wood’s Anomalies on the THz Transmission Spectra of Free- Standing Metallic Hole Arrays. In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015. https://doi.org/10.1109/irmmw-thz.2015.7327803
- Pan, Y., Powell, C., & Balocco, C. (2014). Rectennas for Thermal-Energy Conversion. In 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2014). Proceedings of a meeting held 14-19 September 2014, Tucson, Arizona, USA (1-2). https://doi.org/10.1109/irmmw-thz.2014.6956198
- Balocco, C., Pan, Y., Kasjoo, S., Alimi, Y., Zhang, L., & Song, A. (2014). THz Imaging with Broadband Thermal Sources. In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 14-19 September 2014, Tucson, Arizona, USA ; proceedings (53-54). https://doi.org/10.1109/irmmw-thz.2014.6956043
Journal Article
- Fenlon, V., Cooke, M., Mayock, J., Gallant, A., & Balocco, C. (2022). Genetic algorithms for the design of planar THz antenna. Journal of Applied Physics, 132, https://doi.org/10.1063/5.0120128
- Frozanpoor, I., Cooke, M., Alvarez-Ruiz, D., Ambukan, V., Gallant, A., & Balocco, C. (2021). Tilting micromirror platform based on liquid dielectrophoresis. Sensors and Actuators A: Physical, 332(2), Article 113177. https://doi.org/10.1016/j.sna.2021.113177
- Frozanpoor, I., Cooke, M. D., Ambukan, V., Gallant, A. J., & Balocco, C. (2021). Continuous Droplet-Actuating Platforms via an Electric Field Gradient: Electrowetting and Liquid Dielectrophoresis. Langmuir, 37(21), 6414-6422. https://doi.org/10.1021/acs.langmuir.1c00329
- Frozanpoor, I., Cooke, M., Racz, Z., Bossons, I., Ambukan, V., Wood, D., …Balocco, C. (2021). Programmable droplet actuating platform using liquid dielectrophoresis. Journal of Micromechanics and Microengineering, 31(5), https://doi.org/10.1088/1361-6439/abf032
- Lees, R., Cooke, M., Balocco, C., & Gallant, A. (2019). Computer Aided Patterning Design for Self-Assembled Microsphere Lithography (SA-MSL). Scientific Reports, 9, Article 12849. https://doi.org/10.1038/s41598-019-48881-z
- Etor, D., Dodd, L. E., Balocco, C., & Wood, D. (2019). Conduction mechanisms in metal/self-assembled monolayer/metal junctions. Micro and Nano Letters, 14(7), 808-811. https://doi.org/10.1049/mnl.2018.5747
- Jin, J., Wang, L., Zheng, Z., Zhang, J., Hu, X., Lu, J. R., …Balocco, C. (2019). Metal-insulator-metal diodes based on alkyltrichlorosilane self-assembled monolayers. AIP Advances, 9(6), https://doi.org/10.1063/1.5100252
- Shenton, S. A., Cooke, M. D., Racz, Z., Balocco, C., & Wood, D. (2018). The Effect of Humidity on Microwave Characteristics of 2 Screen Printed Paper-Based Electronics. physica status solidi (a) – applications and materials science, 215(11), Article 1700689. https://doi.org/10.1002/pssa.201700689
- Etor, D., Dodd, L., Wood, D., & Balocco, C. (2016). High-performance rectifiers fabricated on a flexible substrate. Applied Physics Letters, 109(19), Article 193110. https://doi.org/10.1063/1.4967190
- Hammler, J., Gallant, A. J., & Balocco, C. (2016). Free-Space Permittivity Measurement at Terahertz Frequencies with a Vector Network Analyser. IEEE Transactions on Terahertz Science & Technology, 6(6), 817-823. https://doi.org/10.1109/tthz.2016.2609204
- Etor, D., Dodd, L., Wood, D., & Balocco, C. (2016). An ultrathin organic insulator for metal-insulator-metal diodes. IEEE Transactions on Electron Devices, 63(7), 2887-2891. https://doi.org/10.1109/ted.2016.2568279
- Gubaydullin, A., Mazlin, V., Ivanov, K., Kaliteevski, M., & Balocco, C. (2016). Angular and positional dependence of Purcell effect for layered metal-dielectric structures. Applied Physics A: Materials Science and Processing, 122(4), Article 425. https://doi.org/10.1007/s00339-016-9875-3
- Pan, Y., Powell, C., Song, A., & Balocco, C. (2014). Micro rectennas: Brownian ratchets for thermal-energy harvesting. Applied Physics Letters, 105(25), Article 253901. https://doi.org/10.1063/1.4905089
- Lu, X., Balocco, C., Yang, F., & Song, A. M. (2012). Highly Reproducible Nanolithography by Dynamic Plough of an Atomic-Force Microscope Tip and Thermal-Annealing Treatment. Computer, 10(1), 53-58. https://doi.org/10.1109/c-m.1977.217498
- Balocco, C., Kasjoo, S. R., Lu, X. F., Zhang, L. Q., Alimi, Y., Winnerl, S., & Song, A. M. (2011). Room-temperature operation of a unipolar nanodiode at terahertz frequencies. Applied Physics Letters, 98(22), Article 223501. https://doi.org/10.1063/1.3595414
- Irshaid, M. Y., Balocco, C., Luo, Y., Bao, P., Brox-Nilsen, C., & Song, A. M. (2011). Zinc-oxide-based planar nanodiodes operating at 50 MHz. Applied Physics Letters, 99(9), Article 092101. https://doi.org/10.1063/1.3629995
- Balocco, C., Kasjoo, S. R., Zhang, L. Q., Alimi, Y., & Song, A. M. (2011). Low-frequency noise of unipolar nanorectifiers. Applied Physics Letters, 99(11), Article 113511. https://doi.org/10.1063/1.3636437
- Lin, S., Du, J., Balocco, C., Wang, Q., & Song, A. (2008). Effects of bias cooling on charge states in heterostructures embedding self-assembled quantum dots. Physical Review B (Condensed Matter), 78(11),
- Balocco, C., Halsall, M., Vinh, N., & Song, A. (2008). THz operation of asymmetric-nanochannel devices. Journal of Physics: Condensed Matter, 20(38), Article 384203. https://doi.org/10.1088/0953-8984/20/38/384203
- Majewski, L., Balocco, C., King, R., Whitelegg, S., & Song, A. (2008). Fast polymer nanorectifiers for inductively coupled RFID tags. Materials Science and Engineering: B, 147(2-3), 289 - 292
- Balocco, C., Majewski, L., & Song, A. (2006). Non-destructive patterning of conducting-polymer devices using subtractive photolithography. Organic Electronics, 7(6), 500 - 507
- Balocco, C., Jones, A., Kingsley, J., Chan, J., Huang, X., & Song, A. (2006). Scanning probe microscope based nanolithography on conducting polymer films
- Jones, A. G., Balocco, C., King, R., & Song, A. M. (2006). Highly tunable, high-throughput nanolithography based on strained regioregular conducting polymer films. Applied Physics Letters, 89(1), https://doi.org/10.1063/1.2219094
- Majewski, L., Kingsley, J., Balocco, C., & Song, A. (2006). Influence of processing conditions on the stability of poly(3-hexylthiophene)-based field-effect transistors. Applied Physics Letters, 88(22), https://doi.org/10.1063/1.2208938
- Balocco, C., Song, A., Åberg, M., Forchel, A., González, T., Mateos, J., …Xu, H. (2005). Microwave detection at 110 GHz by nanowires with broken symmetry. Nano Letters, 5(7), 1423 - 1427
- Lin, S., Balocco, C., Missous, M., Peaker, A., & Song, A. (2005). Coexistence of deep levels with optically active InAs quantum dots. Physical Review B, 72(16),
- Balocco, C., Song, A., & Missous, M. (2004). Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures. Applied Physics Letters, 85(24), 5911 - 5913. https://doi.org/10.1063/1.1831558
Presentation
- Klein, A., Zeze, D., Balocco, C., & Gallant, A. (2016, June). Quality Factor Comparison of Terahertz Cavities Formed by Photonic Crystal Slabs. Paper presented at Nanostructures for Photonics (NSP) 2016, St Petersburg, Russia
- Gubaydullin, A., Mazlin, V., Ivanov, K., Kaliteevski, M., & Balocco, C. (2016, June). Angular and positional dependence of Purcell effect for layered metal-dielectric structures. Paper presented at Nanostructures for Photonics (NSP) 2016, St Petersburg, Russia
- Balocco, C. (2013, September). Electronic nanodevices for energy harvesting: a novel approach to thermal energy conversion. Paper presented at 22nd European Workshop on Heterostructure Technology (HETECH) 2013, Glasgow, UK
- Hajji, M., Zeze, D., Balocco, C., & Gallant, A. (2016, June). Artificial Dielectric Based Antireflection layer for Terahertz Applications. Paper presented at Nanostructures for Photonics (NSP) 2016, St Petersburg, Russia
- Klein, A., Hill, C., Hammler, J., Zeze, D., Gallant, A., & Balocco, C. (2016, October). High quality filter for high traffic load short range high bandwidth future communication networks at THz frequencies. Poster presented at IET Radio Propagation and Technologies for 5G, Durham, UK