Skip to main content
Emeritus Professor in the Department of Chemistry


Coordination chemistry; diagnostics and imaging; lanthanides; chirality

David Parker grew up in the North-East of England and graduated with a First in Chemistry from Oxford in the summer of ‘78. After a D.Phil. with John M Brown on mechanistic studies in asymmetric catalysis, in 1980 he took up a NATO fellowship to work with Jean-Marie Lehn in Strasbourg. He returned to Durham in January 1982 to a Lectureship in Chemistry and was promoted to a Chair in 1992. He received the RSC Hickinbottom Fellowship for 1988/9, the Corday-Morgan Medal and Prize in 1989, the ICI Prize in Organic Chemistry in 1991, an RSC Interdisciplinary Award in 1996, a Royal Society Leverhulme Trust Senior Research Fellowship (1998/9), the inaugural IBC Award for Supramolecular Science and Technology in 2000, the first RSC award for Supramolecular Chemistry in 2002, a Tilden Lectureship and Silver Medal in 2003, the Ludwig Mond Medal in 2011 and the triennial Lecoq de Boisbaudran award for rare earth science in 2012. In 2002, he was elected a Fellow of the Royal Society of London, and in 2014 was recognized as a RISE Fellow by EPSRC. He has twice served as Chairman of Durham Chemistry and held an ERC Advanced Investigator Grant (2011-16).

Research Interests

The chemistry of new chiral systems is being studied using multidisciplinary techniques to address key aspects of complexation phenomena in aqueous and biological media. It examines:

  • new aspects of coordination and complexation chemistry, developing metal complexes or conjugates that may bind reversibly or react selectively with biomolecules; their behaviour in vitro and via in cellulo examinations to in vivo applications;
  • the development of very bright 1 and responsive, luminescent lanthanide complexes in which the metal-based emission is a function of the local ionic or chiral environment; this work embraces the synthesis of imaging probes for bioactive species and the development of chiral probes and labels for circularly polarised luminescence (CPL) spectroscopy and microscopy (with Dr. Robert Pal in Durham);
  • the synthesis and characterisation of functional magnetic resonance probes, developing responsive and targeted paramagnetic contrast agents that provide information on local pH and temperature in deep tissue, using ParaShift Magnetic Resonance Imaging and Spectroscopy (MRI/MRS: with Prof AM Blamire in Newcastle).

We enjoy fruitful collaborations with academic and industrial research groups in Italy (Turin and Alessandria), France (CISBio Bioassays), and the USA (Harvard). Within the group, pulsed NMR at six field strengths, luminescence spectroscopy and microscopy, electrospray mass spectrometry, HPLC and ratiometric methods of analysis are used to define solution complexation phenomena.

Responsive Lanthanide Complexes and Sensors

Several single component, macrocyclic complexes of the lanthanide ions have been devised in which the delayed emission from the metal ion within a defined compartment (e.g. a cell organelle) is a sensitive function of pH, dissolved oxygen and the concentration of certain anions - including phosphorus(V) oxy-anions (e.g. ATP and ADP), bicarbonate, lactate citrate and urate, as well as certain serum proteins, such as AGP and serum albumin 2-6. The factors determining the cellular localisation profile of well-defined series of metal complexes are examined, including studies of the mechanism of cell uptake and trafficking. In collaboration with colleagues in Newcastle and Harvard, fast relaxing and paramagnetically shifted probes for dual and triple 1H imaging in vivo are being developed for MRI and MRS, notably using complexes of dysprosium, erbium and thulium. 7,8 In collaboration with leading groups in Southampton and Manchester, new theories of electronic and nuclear relaxation are being devised. The consequences of the anisotropy and orientation of magnetic and electric susceptibility tensors in rare earth complexes with ligand fields of differing sizes is being explored, with profound consequences in NMR shift and relaxation behaviour and in optical emission spectroscopy. 8,9 

    1. AT Frawley, HV Linford, M Starck, R Pal, D Parker, Chem Sci, 2018, 9, 1042-1049; AT Frawley, D Parker and R Pal, Chem Commun 2016, 52, 13349-13352; SJ Butler, M Delbianco, L Lamarque, BK McMahon, ER Neil, R Pal, D Parker, JW Walton, JM Zwier, Dalton Trans 2015, 44, 4791; M Delbianco, V Sadovnikova, E Bourrier, L Lamarque, JM Zwier, D Parker, Angew Chem Int Ed Engl, 2014, 53, 10718.
    2. M Starck, R Pal and D Parker, Chem-Eur J 2016, 22, 570-580; SJ Butler, D Parker Chem Soc Rev, 2013, 42, 1652; R Carr, NH Evans, D Parker Chem Soc Rev, 2012, 41 4673.
    3. ER Neil MA Fox, R Pal and D Parker Dalton Trans 2016, 45, 8355-8366; ERH Walter, JAG Williams, D Parker, Chem Commun 2017, 53, 13344-13347. 
    4. BK McMahon, R Pal, D Parker Chem Comm 2013, 49, 5363; SJ Butler, BK McMahon, R Pal D Parker JW Walton, Chem Eur J 2013, 19, 9511.
    5. S Shuvaev, EA Suturina, K Mason, D Parker, Chem Sci 2018, 9, 2996-3003; S Shuvaev, R Pal, D Parker, Chem Commun 2017, 53, 6724-6727. 
    6. L Jennings, RS Waters, R Pal, D Parker, ChemMedChem 2017, 12, 271-277.
    7. PK Senanayake, NJ Rogers, P Harvey, K-LNA Finney, AM Funk, JI Wilson, R Maxwell, D Parker and AM Blamire, Magn Reson Med 2017, 77, 1307-1317; K Mason NJ Rogers, E Suturina, JA Aguilar AS Batsanov, DS Yufit, D Parker, Inorg Chem 2017, 56, 4028-4038; AM Funk, K-L NA Finney, P Harvey, AM Kenwright, ER Neil, NJ Rogers, PK Senanayake, D Parker, Chem Sci 2015, 6, 1655.
    8. D Parker I Kuprov, EA Suturina, K Mason, CFGC Geraldes, Angew Chem Int Ed 2017, 56, 12215-12218; M Vonci, K Mason, EA Suturina, AT Frawley, SG Worswick, I Kuprov, EJL McInnes, D Parker, NF Chilton, J Am Chem Soc, 2017, 139, 14166-14172. 
    9. OA Blackburn, RM Edkins, S Faulkner, AM Kenwright, NJ Rogers, S Shuvaev and D Parker, Dalton Trans, 2016, 45, 6782-6800. 

The Parker group WWW pages

Research interests

  • Coordination Chemistry
  • Diagnostics and Imaging
  • Lanthanides
  • Chirality

Esteem Indicators

  • 2014: Elected as EPSRC RISE Fellow: A RISE Fellowship (Recognising Inspiration in Science and Engineering) was awarded to Professor David Parker FRS in 2014
  • 2012: Ludwig Mond Award: The Royal Society of Chemistry awarded Professor David Parker FRS the Ludwig Mond Prize Lectureship for 2011 in recognition of his work on the coordination chemistry of rare earth complexes. This prize is given in recognition of major contributions to Inorganic Chemistry.
  • 2012: Lecoq de Boisbaudran Award: Triennial Award in Rare Earth Science given by the European Rare Earth Society in August 2012.
  • 2002: FRS: Elected as a Fellow of the Royal Society of London


Journal Article

Other (Print)