Staff profile
Overview
https://apps.dur.ac.uk/biography/image/4415
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences |
Research interests
- Algebraic Topology
- Differential Topology
Publications
Chapter in book
- Geometric chain homotopy equivalences between Novikov complexesSchuetz, D. (2003). Geometric chain homotopy equivalences between Novikov complexes. In F. Farrell & W. Lück (Eds.), High-dimensional manifold topology (pp. 469-498). World Scientific Publishing.
- Obstructions to homotopy invariance in parametrized fixed point theoryGeoghegan, R., Nicas, A., & Schuetz, D. (2000). Obstructions to homotopy invariance in parametrized fixed point theory. In K. Grove, I. Madsen, & E. Pedersen (Eds.), Geometry and topology: Aarhus (1998) (pp. 157-175). American Mathematical Society.
Journal Article
- A note on the X-torsion order of a knotSchuetz, D. (2025). A note on the X-torsion order of a knot. Canadian Mathematical Bulletin. Advance online publication. https://doi.org/10.4153/S0008439525000323
- On an integral version of the Rasmussen invariantSchuetz, D. (2023). On an integral version of the Rasmussen invariant. Michigan Mathematical Journal, 1-24. https://doi.org/10.1307/mmj/20226211
- A calculus for flow categoriesLobb, A., Orson, P., & Schuetz, D. (2022). A calculus for flow categories. Advances in Mathematics, 409(Part B), Article 108665. https://doi.org/10.1016/j.aim.2022.108665
- Corrigendum to: A fast algorithm for calculating S-invariantsSchuetz, D. (2022). Corrigendum to: A fast algorithm for calculating S-invariants. Glasgow Mathematical Journal, 64(2), 526-526. https://doi.org/10.1017/s001708952100032x
- A scanning algorithm for odd Khovanov homologySchuetz, D. (2022). A scanning algorithm for odd Khovanov homology. Algebraic and Geometric Topology, 22, 1287-1324. https://doi.org/10.2140/agt.2022.22.1287
- A fast Algorithm for calculating S-InvariantsSchuetz, D. (2021). A fast Algorithm for calculating S-Invariants. Glasgow Mathematical Journal, 63(2), 378-399. https://doi.org/10.1017/s0017089520000257
- Arbitrarily large torsion in Khovanov cohomologyMukherjee, S., & Schuetz, D. (2021). Arbitrarily large torsion in Khovanov cohomology. Quantum Topology, 12(2), 243-264. https://doi.org/10.4171/qt/149
- Torsion calculations in Khovanov cohomologySchuetz, D. (2020). Torsion calculations in Khovanov cohomology. Journal of Knot Theory and Its Ramifications, 29(8), Article 2071001. https://doi.org/10.1142/s0218216520710017
- Khovanov homotopy calculations using flow category calculusLobb, A., Orson, P., & Schuetz, D. (2020). Khovanov homotopy calculations using flow category calculus. Experimental Mathematics, 29(4), 475-500. https://doi.org/10.1080/10586458.2018.1482805
- An sl(n) stable homotopy type for matched diagramsJones, D., Lobb, A., & Schuetz, D. (2019). An sl(n) stable homotopy type for matched diagrams. Advances in Mathematics, 356, Article 106816. https://doi.org/10.1016/j.aim.2019.106816
- Framed cobordism and flow category movesLobb, A., Orson, P., & Schuetz, D. (2018). Framed cobordism and flow category moves. Algebraic and Geometric Topology, 18, 2821-2858. https://doi.org/10.2140/agt.2018.18.2821
- Morse moves in flow categoriesLobb, A., Jones, D., & Schuetz, D. (2017). Morse moves in flow categories. Indiana University Mathematics Journal, 66(5), 1603-1657. https://doi.org/10.1512/iumj.2017.66.6136
- A Khovanov stable homotopy type for colored linksLobb, A., Orson, P., & Schuetz, D. (2017). A Khovanov stable homotopy type for colored links. Algebraic and Geometric Topology, 17(2), 1261-1281. https://doi.org/10.2140/agt.2017.17.1261
- Intersection homology of linkage spacesSchuetz, D. (2016). Intersection homology of linkage spaces. Journal of Topology and Analysis, 08(01), 25-58. https://doi.org/10.1142/s1793525316500023
- Intersection homology of linkage spaces in odd dimensional Euclidean spaceSchuetz, D. (2016). Intersection homology of linkage spaces in odd dimensional Euclidean space. Algebraic and Geometric Topology, 16(1), 483-508. https://doi.org/10.2140/agt.2016.16.483
- On singular foliations on the solid torusArraut, J., Martins, L., & Schuetz, D. (2013). On singular foliations on the solid torus. Topology and Its Applications, 160(13), 1659-1674. https://doi.org/10.1016/j.topol.2013.06.012
- Homology of moduli spaces of linkages in high-dimensional Euclidean spaceSchuetz, D. (2013). Homology of moduli spaces of linkages in high-dimensional Euclidean space. Algebraic and Geometric Topology, 13(2), 1183-1224. https://doi.org/10.2140/agt.2013.13.1183
- The Walker conjecture for chains in ℝdFarber, M., Hausmann, J.-C., & Schuetz, D. (2011). The Walker conjecture for chains in ℝd. Mathematical Proceedings of the Cambridge Philosophical Society, 151(02), 283-292. https://doi.org/10.1017/s030500411100020x
- Closed 1-forms in topology and geometric group theoryFarber, M., Geoghegan, R., & Schuetz, D. (2010). Closed 1-forms in topology and geometric group theory. Russian Mathematical Surveys, 65(1), 143-172. https://doi.org/10.1070/rm2010v065n01abeh004663
- The isomorphism problem for planar polygon spacesSchuetz, D. (2010). The isomorphism problem for planar polygon spaces. Journal of Topology, 3(3), 713-742. https://doi.org/10.1112/jtopol/jtq024
- On the conjecture of Kevin WalkerFarber, M., Hausmann, J.-C., & Schuetz, D. (2009). On the conjecture of Kevin Walker. Journal of Topology and Analysis, 1(1), 65-86. https://doi.org/10.1142/s1793525309000023
- Novikov homology of HNN-extensions and right-angled Artin groupsSchuetz, D. (2009). Novikov homology of HNN-extensions and right-angled Artin groups. Algebraic and Geometric Topology, 9(2), 773-809. https://doi.org/10.2140/agt.2009.9.773
- Closed 1-forms in topology and dynamicsFarber, M., & Schuetz, D. (2008). Closed 1-forms in topology and dynamics. Russian Mathematical Surveys, 63(6), 1079-1136. https://doi.org/10.1070/rm2008v063n06abeh004579
- On the direct product conjecture for sigma invariantsSchuetz, D. (2008). On the direct product conjecture for sigma invariants. Bulletin of the London Mathematical Society, 40(4), 675-684. https://doi.org/10.1112/blms/bdn048
- Homological category weights and estimates for cat^1(X,ξ)Farber, M., & Schuetz, D. (2008). Homological category weights and estimates for cat^1(X,ξ). Journal of the European Mathematical Society, 10(1), 243-266. https://doi.org/10.4171/jems/110
- Cohomological estimates for cat(X,xi)Farber, M., & Schuetz, D. (2007). Cohomological estimates for cat(X,xi). Geometry and Topology, 11(1), 1255-1288. https://doi.org/10.2140/gt.2007.11.1255
- Moving homology classes to infinity.Farber, M., & Schuetz, D. (2007). Moving homology classes to infinity. Forum Mathematicum, 19, 281-296. https://doi.org/10.1515/forum.2007.010
- Homology of planar polygon spaces.Farber, M., & Schuetz, D. (2007). Homology of planar polygon spaces. Geometriae Dedicata, 25, 75-92. https://doi.org/10.1007/s10711-007-9139-7
- On the Whitehead group of Novikov rings associated to irrational homomorphisms.Schuetz, D. (2007). On the Whitehead group of Novikov rings associated to irrational homomorphisms. Journal of Pure and Applied Algebra, 208(2), 449-466. https://doi.org/10.1016/j.jpaa.2006.01.005
- Closed 1-forms with at most one zeroFarber, M., & Schutz, D. (2006). Closed 1-forms with at most one zero. Topology, 45(3), 465-473. https://doi.org/10.1016/j.top.2005.06.006
- Finite domination, Novikov homology and nonsingular closed 1-formsSchuetz, D. (2006). Finite domination, Novikov homology and nonsingular closed 1-forms. Mathematische Zeitschrift, 252(3), 623-654. https://doi.org/10.1007/s00209-005-0868-8
- Novikov-Betti numbers and the fundamental groupFarber, M., & Schuetz, D. (2006). Novikov-Betti numbers and the fundamental group. Russian Mathematical Surveys, 61(6), 1173-1175. https://doi.org/10.1070/rm2006v061n06abeh004378
- On the algebraic K- and L-theory of word hyperbolic groupsRosenthal, D., & Schuetz, D. (2005). On the algebraic K- and L-theory of word hyperbolic groups. Mathematische Annalen, 332(3), 523-532. https://doi.org/10.1007/s00208-005-0634-6
- On the Lusternik-Schnirelman theory of a real cohomology class.Schuetz, D. (2004). On the Lusternik-Schnirelman theory of a real cohomology class. Manuscripta Mathematica, 113(1), 85-106. https://doi.org/10.1007/s00229-003-0423-z
- Zeta functions for gradients of closed 1-formsSchuetz, D. (2004). Zeta functions for gradients of closed 1-forms. Topology and Its Applications, 144(1-3), 147-160. https://doi.org/10.1016/j.topol.2004.04.005
- Gradient flows of closed 1-forms and their closed orbitsSchuetz, D. (2002). Gradient flows of closed 1-forms and their closed orbits. Forum Mathematicum, 14(4), 509-537. https://doi.org/10.1515/form.2002.024
- One-parameter fixed-point theory and gradient flows of closed 1-formsSchuetz, D. (2002). One-parameter fixed-point theory and gradient flows of closed 1-forms. K-Theory, 25(1), 59-97. https://doi.org/10.1023/a%3A1015079805400
- Controlled connectivity of closed 1-formsSchuetz, D. (2002). Controlled connectivity of closed 1-forms. Algebraic and Geometric Topology, 2, 171-217. https://doi.org/10.2140/agt.2002.2.171
Supervision students
Chris Johnson
2P
Michael Kohn
2P