Staff profile
Overview
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Mathematical Sciences |
Biography
Research Interests
My research involves, broadly, the study of random systems at criticality. I am particularly interested in critical phenomena, scaling limits and more generally, random geometry. This is the study of the random curves and surfaces which arise as scaling limits of critical statistical physics models.
Research interests
- Probability Theory
- Random Geometry
Publications
Authored book
Journal Article
- Harris, S. C., Horton, E., Kyprianou, A. E., & Powell, E. (2024). Many-to-few for non-local branching Markov process. Electronic Journal of Probability, 29, 1-26. https://doi.org/10.1214/24-ejp1098
- Aru, J., Papon, L., & Powell, E. (2023). Thick points of the planar GFF are totally disconnected for all γ≠0. Electronic Journal of Probability, 28, 1-24. https://doi.org/10.1214/23-ejp975
- Aru, J., Holden, N., Powell, E., & Sun, X. (2023). Brownian half‐plane excursion and critical Liouville quantum gravity. Journal of the London Mathematical Society, 107(1), 441-509. https://doi.org/10.1112/jlms.12689
- Aru, J., & Powell, E. (2022). A characterisation of the continuum Gaussian free field in arbitrary dimensions. Journal de l’École polytechnique — Mathématiques, 9, 1101-1120. https://doi.org/10.5802/jep.201
- Holden, N., & Powell, E. (2021). Conformal welding for critical Liouville quantum gravity. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 57(3), 1229-1254. https://doi.org/10.1214/20-aihp1116
- Powell, E. (2021). Critical Gaussian multiplicative chaos: a review. Markov processes and related fields, 27(4), 557-606
- Berestycki, N., Powell, E., & Ray, G. (2021). (1+𝜀) moments suffice to characterise the GFF. Electronic Journal of Probability, 26(44), 1-25. https://doi.org/10.1214/20-ejp566
- Berestycki, N., Powell, E., & Ray, G. (2020). A characterisation of the Gaussian free field. Probability Theory and Related Fields, 176(3-4), 1259-1301. https://doi.org/10.1007/s00440-019-00939-9
- Aru, J., Powell, E., & Sepúlveda, A. (2020). Liouville measure as a multiplicative cascade via level sets of the Gaussian free field. Annales de l'Institut Fourier, 70(1), 245-205. https://doi.org/10.5802/aif.3312
- Powell, E. (2019). An invariance principle for branching diffusions in bounded domains. Probability Theory and Related Fields, 173(3-4), 999-1062. https://doi.org/10.1007/s00440-018-0847-8
- Aru, J., Powell, E., & Sepúlveda, A. (2019). Critical Liouville measure as a limit of subcritical measures. Electronic Communications in Probability, 24, 1-16. https://doi.org/10.1214/19-ecp209
- Powell, E. (2018). Critical Gaussian chaos: convergence and uniqueness in the derivative normalisation. Electronic Journal of Probability, 23, 1-26. https://doi.org/10.1214/18-ejp157
- Powell, E., & Wu, H. (2017). Level lines of the Gaussian free field with general boundary data. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 53(4), 2229-2259. https://doi.org/10.1214/16-aihp789
Supervision students
Charles Hall
Leonie Papon
3Prob