Staff profile
Dr Farshad Arvin
Associate Professor
Affiliation | Room number | Telephone |
---|---|---|
Associate Professor in the Department of Computer Science | MCS 2058 | +44 (0) 191 33 41720 |
Biography
Background
Before joining Durham in 2022, Farshad was a Lecturer in Robotics (2018-2021) and a Senior Lecturer in Robotics (2021-2022) in the Department of Electrical & Electronic Engineering at The University of Manchester.
He joined the University of Manchester in 2015 as a Post-Doctoral Research Associate in the Robotics for Extreme Environments group at the Department of Electrical & Electronic Engineering. He was a Research Assistant at the Lincoln Centre for Autonomous Systems (L-CAS) at the University of Lincoln, UK (2012 to 2015). He was awarded a Marie Skłodowska-Curie fellowship for being involved in the FP7-EYE2E and LIVCODE EU projects during his PhD study.
Farshad Arvin is an Associate Professor in the Department of Computer Science at Durham University.
He received his BSc degree in Computer Engineering in 2004, an MSc degree in Computer Systems Engineering in 2010, and a PhD in Computer Science in 2015.
Experience
Farshad's research interests include Bio-inspired Swarm Robotics, Autonomous Multi-agent Systems and Biohybrid Robotics.
He visited several leading institutes, including Artificial Life Laboratory in Karl-Franzens University of Graz, Austria, in 2018; the Italian Institute of Technology (iit) in Genoa, Italy, in 2017; Institute of Rehabilitation and Medical Robotics in Huazhong University of Science and Technology (HUST), Wuhan, China, in 2014; and the Institute of Microelectronics at Tsinghua University in Beijing, China, in 2013 and 2012.
Research Team and Projects
Farshad is the founding director of Swarm & Computation Intelligence Laboratory (SwaCIL), formed in 2018. The lab hosts 3 Post-Doctoral Research Associates, an Electronics technician and 8 PGR students. It has received more than £3M in direct funding from the EU, EPSRC, InnovateUK and industry. Farshad coordinates several research projects, including a large EU project H2020-FET RoboRoyale (2021-2026, €3.27M) and PI in Horizon Europe Pathfiner Sensorbees (2024-2029, €3.2M) and H2020-FET Robocoenosis (2020-2025, €3M).
Research interests
- Swarm Robotics
- Bio-inspired Swarms
- Multi-agent Systems
- Bio-hybrid Systems
Publications
Chapter in book
- Bahaidarah, M., Bana, F. R., Turgut, A. E., Marjanovic, O., & Arvin, F. (in press). Optimization of a Self-organized Collective Motion in a Robotic Swarm. In Swarm Intelligence. https://doi.org/10.1007/978-3-031-20176-9_31
- Bilaloğlu, C., Şahin, M., Arvin, F., Şahin, E., & Turgut, A. E. (in press). A Novel Time-of-Flight Range and Bearing Sensor System for Micro Air Vehicle Swarms. In Swarm Intelligence. https://doi.org/10.1007/978-3-031-20176-9_20
Conference Paper
- Wu, K., Hu, J., Lennox, B., & Arvin, F. (2022). Mixed Controller Design for Multi-Vehicle Formation Based on Edge and Bearing Measurements. In 2022 European Control Conference (ECC). https://doi.org/10.23919/ecc55457.2022.9838436
- Thenius, R., Rajewicz, W., Varughese, J. C., Schoenwetter-Fuchs, S., Arvin, F., Casson, A. J., …Schmickl, T. (2021). Biohybrid Entities for Environmental Monitoring. . https://doi.org/10.1162/isal_a_00366
- Jang, I., Hu, J., Arvin, F., Carrasco, J., & Lennox, B. (2021). Omnipotent Virtual Giant for Remote Human–Swarm Interaction. . https://doi.org/10.1109/ro-man50785.2021.9515542
- Arvin, F., Turgut, A. E., Krajnik, T., Rahimi, S., Okay, I. E., Yue, S., …Lennox, B. (2018). Φ Clust: Pheromone-Based Aggregation for Robotic Swarms. . https://doi.org/10.1109/iros.2018.8593961
- Arvin, F., Krajnik, T., Turgut, A. E., & Yue, S. (2015). COSΦ: Artificial pheromone system for robotic swarms research. . https://doi.org/10.1109/iros.2015.7353405
Journal Article
- Rajewicz, W., Wu, C., Romano, D., Campo, A., Arvin, F., Casson, A. J., …Thenius, R. (2024). Organisms as sensors in biohybrid entities as a novel tool for in-field aquatic monitoring. Bioinspiration & Biomimetics, 19(1), Article 015001. https://doi.org/10.1088/1748-3190/ad0c5d
- Wu, K., Hu, J., Ding, Z., & Arvin, F. (in press). Finite-Time Fault-Tolerant Formation Control for Distributed Multi-Vehicle Networks With Bearing Measurements. IEEE Transactions on Automation Science and Engineering, https://doi.org/10.1109/tase.2023.3239748
- Hu, J., Turgut, A. E., Krajnik, T., Lennox, B., & Arvin, F. (in press). Occlusion-Based Coordination Protocol Design for Autonomous Robotic Shepherding Tasks. IEEE Transactions on Cognitive and Developmental Systems, 14(1), https://doi.org/10.1109/tcds.2020.3018549
- Na, S., Roucek, T., Ulrich, J., Pikman, J., Krajnik, T., Lennox, B., & Arvin, F. (in press). Federated Reinforcement Learning for Collective Navigation of Robotic Swarms. IEEE Transactions on Cognitive and Developmental Systems, https://doi.org/10.1109/tcds.2023.3239815
- Chai, R., Niu, H., Carrasco, J., Arvin, F., Yin, H., & Lennox, B. (in press). Design and Experimental Validation of Deep Reinforcement Learning-Based Fast Trajectory Planning and Control for Mobile Robot in Unknown Environment. IEEE Transactions on Neural Networks and Learning Systems, https://doi.org/10.1109/tnnls.2022.3209154
- Sadeghi Amjadi, A., Bilaloğlu, C., Turgut, A. E., Na, S., Şahin, E., Krajník, T., & Arvin, F. (2023). Reinforcement learning-based aggregation for robot swarms. Adaptive Behavior, https://doi.org/10.1177/10597123231202593
- Rekabi-Bana, F., Hu, J., Krajník, T., & Arvin, F. (2023). Unified Robust Path Planning and Optimal Trajectory Generation for Efficient 3D Area Coverage of Quadrotor UAVs. IEEE Transactions on Intelligent Transportation Systems, https://doi.org/10.1109/tits.2023.3320049
- Xie, S., Hu, J., Ding, Z., & Arvin, F. (2023). Cooperative Adaptive Cruise Control for Connected Autonomous Vehicles using Spring Damping Energy Model. IEEE Transactions on Vehicular Technology, 72(3), 2974 - 2987. https://doi.org/10.1109/tvt.2022.3218575
- Xie, S., Hu, J., Bhowmick, P., Ding, Z., & Arvin, F. (2022). Distributed Motion Planning for Safe Autonomous Vehicle Overtaking via Artificial Potential Field. IEEE Transactions on Intelligent Transportation Systems, 23(11), 21531- 21547. https://doi.org/10.1109/tits.2022.3189741
- Hu, J., Lennox, B., & Arvin, F. (2022). Robust formation control for networked robotic systems using Negative Imaginary dynamics. Automatica, 140, Article 110235. https://doi.org/10.1016/j.automatica.2022.110235
- Hu, J., Niu, H., Carrasco, J., Lennox, B., & Arvin, F. (2022). Fault-tolerant cooperative navigation of networked UAV swarms for forest fire monitoring. Aerospace Science and Technology, 123, Article 107494. https://doi.org/10.1016/j.ast.2022.107494
- Na, S., Niu, H., Lennox, B., & Arvin, F. (2022). Bio-Inspired Collision Avoidance in Swarm Systems via Deep Reinforcement Learning. IEEE Transactions on Vehicular Technology, 71(3), 2511-2526. https://doi.org/10.1109/tvt.2022.3145346
- Hu, J., Turgut, A. E., Lennox, B., & Arvin, F. (2022). Robust Formation Coordination of Robot Swarms With Nonlinear Dynamics and Unknown Disturbances: Design and Experiments. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(1), 114-118. https://doi.org/10.1109/tcsii.2021.3074705
- Stefanec, M., Hofstadler, D. N., Krajník, T., Turgut, A. E., Alemdar, H., Lennox, B., …Schmickl, T. (2022). A Minimally Invasive Approach Towards “Ecosystem Hacking” With Honeybees. Frontiers in Robotics and AI, 9, Article 791921. https://doi.org/10.3389/frobt.2022.791921
- Ban, Z., Hu, J., Lennox, B., & Arvin, F. (2021). Self-Organised Collision-Free Flocking Mechanism in Heterogeneous Robot Swarms. Mobile Networks and Applications, 26(6), 2461–2471. https://doi.org/10.1007/s11036-021-01785-7
- Hu, J., Bhowmick, P., Jang, I., Arvin, F., & Lanzon, A. (2021). A Decentralized Cluster Formation Containment Framework for Multirobot Systems. IEEE Transactions on Robotics, 37(6), 1936-1955. https://doi.org/10.1109/tro.2021.3071615
- Wu, K., Hu, J., Lennox, B., & Arvin, F. (2021). Finite-Time Bearing-Only Formation Tracking of Heterogeneous Mobile Robots With Collision Avoidance. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(10), 3316-3320. https://doi.org/10.1109/tcsii.2021.3066555
- Na, S., Qiu, Y., Turgut, A. E., Ulrich, J., Krajník, T., Yue, S., …Arvin, F. (2021). Bio-inspired artificial pheromone system for swarm robotics applications. Adaptive Behavior, 29(4), 395-415. https://doi.org/10.1177/1059712320918936
- Li, P., Zhang, D., Lennox, B., & Arvin, F. (2021). A 3-DOF piezoelectric driven nanopositioner: Design, control and experiment. Mechanical Systems and Signal Processing, 155, Article 107603. https://doi.org/10.1016/j.ymssp.2020.107603
- Schranz, M., Di Caro, G. A., Schmickl, T., Elmenreich, W., Arvin, F., Şekercioğlu, A., & Sende, M. (2021). Swarm Intelligence and cyber-physical systems: Concepts, challenges and future trends. Swarm and Evolutionary Computation, 60, Article 100762. https://doi.org/10.1016/j.swevo.2020.100762
- Wu, K., Hu, J., Lennox, B., & Arvin, F. (2021). SDP-Based Robust Formation-Containment Coordination of Swarm Robotic Systems with Input Saturation. Journal of Intelligent and Robotic Systems, 102(1), Article 12. https://doi.org/10.1007/s10846-021-01368-4
- Alsayed, A., Yunusa-Kaltungo, A., Quinn, M. K., Arvin, F., & Nabawy, M. R. (2021). Drone-Assisted Confined Space Inspection and Stockpile Volume Estimation. Remote Sensing, 13(17), Article 3356. https://doi.org/10.3390/rs13173356
- Hu, J., Niu, H., Carrasco, J., Lennox, B., & Arvin, F. (2020). Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning. IEEE Transactions on Vehicular Technology, 69(12), https://doi.org/10.1109/tvt.2020.3034800
- Hu, J., Bhowmick, P., Arvin, F., Lanzon, A., & Lennox, B. (2020). Cooperative Control of Heterogeneous Connected Vehicle Platoons: An Adaptive Leader-Following Approach. IEEE Robotics and Automation Letters, 5(2), 977-984. https://doi.org/10.1109/lra.2020.2966412
- Li, P., Zhang, D., Hu, J., Lennox, B., & Arvin, F. (2020). Hysteresis Modelling and Feedforward Control of Piezoelectric Actuator Based on Simplified Interval Type-2 Fuzzy System. Sensors, 20(9), 2587-2599. https://doi.org/10.3390/s20092587
- Liu, Z., West, C., Lennox, B., & Arvin, F. (2020). Local Bearing Estimation for a Swarm of Low-Cost Miniature Robots. Sensors, 20(11), Article 3308. https://doi.org/10.3390/s20113308
- Grieve, B. D., Duckett, T., Collison, M., Boyd, L., West, J., Yin, H., …Pearson, S. (2019). The challenges posed by global broadacre crops in delivering smart agri-robotic solutions: A fundamental rethink is required. Global Food Security, 23, 116-124. https://doi.org/10.1016/j.gfs.2019.04.011
- Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., & Lennox, B. (2019). Mona: an Affordable Open-Source Mobile Robot for Education and Research. Journal of Intelligent and Robotic Systems, 94(3-4), 761–775. https://doi.org/10.1007/s10846-018-0866-9
- Cheah, W., Khalili, H. H., Arvin, F., Green, P., Watson, S., & Lennox, B. (2019). Advanced motions for hexapods. International Journal of Advanced Robotic Systems, 16(2), https://doi.org/10.1177/1729881419841537
- Arvin, F., Watson, S., Turgut, A. E., Espinosa, J., Krajník, T., & Lennox, B. (2018). Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging. Journal of Intelligent and Robotic Systems, 92(3-4), https://doi.org/10.1007/s10846-017-0673-8
- Hu, C., Arvin, F., Xiong, C., & Yue, S. (2017). Bio-Inspired Embedded Vision System for Autonomous Micro-Robots: The LGMD Case. IEEE Transactions on Cognitive and Developmental Systems, 9(3), 241-254. https://doi.org/10.1109/tcds.2016.2574624
- Arvin, F., Turgut, A. E., Krajník, T., & Yue, S. (2016). Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adaptive Behavior, 24(2), 102-118. https://doi.org/10.1177/1059712316632851
- Arvin, F., Murray, J., Zhang, C., & Yue, S. (2014). Colias: An Autonomous Micro Robot for Swarm Robotic Applications. International Journal of Advanced Robotic Systems, 11(7), https://doi.org/10.5772/58730
- Arvin, F., Turgut, A. E., Bazyari, F., Arikan, K. B., Bellotto, N., & Yue, S. (2014). Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adaptive Behavior, 22(3), 189-206. https://doi.org/10.1177/1059712314528009