Staff profile
Dr Gary Sharples
Associate Professor
BSc (Hons) Glasgow, PhD Nottingham

Affiliation | Room number | Telephone |
---|---|---|
Associate Professor in the Department of Biosciences | +44 (0) 191 33 43986 | |
Fellow of the Wolfson Research Institute for Health and Wellbeing | +44 (0) 191 33 43986 |
Biography
My research interests focus on the molecular mechanisms of genetic recombination, a process that is critical for efficient genome replication, accurate chromosomal repair and generating the exchanges and rearrangements that fuel evolution. Characterisation of these processes has important consequences for our understanding of survival following damage to the hereditary material (allied to research on cancer and ageing) and how new infectious diseases emerge. Much of my work involves structural and functional analyses of enzymes that initiate, process and resolve branched DNA recombination intermediates. Our group is currently studying DNA exchanges occurring at unusually high rates in bacterial viruses and how these genomic rearrangements give rise to multiply drug resistant strains and new pathogenic organisms. We are also testing novel surfaces, peptoids and chelants for antibacterial activity in an effort to combat increasingly drug-resistant bacterial pathogens.
Lord of the Rings

‘One ring to rule them all, one ring to find them, one ring to bring them all and in the darkness bind them...to DNA’
Bacteriophages or phages (literally, ‘bacteria eaters’) are widespread viruses infecting virtually every bacterial species. They are the most abundant organisms on Earth and it is estimated that 1025 phages initiate an infection every second. Phages regularly carry genes that can convert relatively benign bacteria into deadly pathogens (e.g. E. coli O157:H7). The lifestyle of phages makes them potent conveyors of genetic information between bacterial species. During the lytic cycle, phage-encoded recombinases promote DNA rearrangements that occasionally result in the acquisition of foreign genes, including virulence determinants. Gene uptake occurs by recombination at sites of limited sequence homology and if the newly assembled combination of genes confers a selective advantage, it will be retained and transmitted to subsequent generations. Our group utilises phage lambda as a model system to study these processes.
Ring One: Exo
Genetic recombination in phage lambda is initiated by the coupled action of Exo and Beta proteins, collectively termed the Red system. Exo is a 26 kDa exonuclease, degrading ssDNA in the 5'-3' direction from a duplex DNA end to produce 3' overhangs. Mononucleotides are released in a highly processive manner at the rate of 10-12 bases per second. The biologically active form of Exo is a trimer arranged as a ring so that a duplex end can be accommodated into the tapering cavity and the exposed ssDNA product is extruded through the central channel. Exo serves as a functional equivalent of RecBCD exonuclease, normally responsible for generating 3' tailed DNA at broken chromosomes in E. coli. RecBCD and a related host nuclease, SbcCD, are disabled by lambda Gam protein to preserve the ends of the phage genome during rolling circle replication.
Ring Two: Beta
Beta protein can generate recombinants by annealing the 3' tailed product generated by Exo to complementary ssDNA sequences. Beta binds to ssDNA, protecting it from attack by single-strand specific nucleases. Beta assembles in solution or in the presence of ssDNA as a multisubunit ring and forms helical filaments on dsDNA which it has annealed. Two pathways of exchange predominate in phage lambda depending on whether a DNA strand is used to invade a homologous duplex or is annealed to a complementary single-strand. The invasion reaction is typical of models for E. coli recombination at a break and requires host RecA to bind single-stranded DNA (ssDNA), locate a homologous duplex and promote strand exchange to create a recombinant joint. The second pathway functions independently of RecA and involves annealing of homologous ssDNA partner sequences by phage Beta protein. More recent studies indicate that exchanges frequently occur within the context of a replication fork.
Ring Three: Orf
Orf participates in the early stages of recombination by apparently supplying a function equivalent to the E. coli RecFOR proteins. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with SSB. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3' or 5' tailed substrates. Orf interacts with SSB and both proteins can jointly assemble on ssDNA. How Orf facilitates loading of Beta or RecA proteins is the subject of ongoing research.
Rings and Recombination
Genetic recombination in bacteriophage lambda relies on DNA end processing by Exo to expose 3' tailed strands for annealing and exchange by Beta protein. Beta resembles human Rad52 in which a positively charged groove around the central hub of the ring leaves nucleotide bases accessible for annealing to complementary ssDNA. Exo and Beta do not simply constitute separate steps in initiation of recombination, they physically associate suggesting that degradation and strand annealing reactions are coordinated. Bacterial SSB protein blocks access of recombinases. Orf protein therefore serves to load Beta or RecA onto DNA coated with SSB to promote recombination reactions. This accessory role is conserved throughout biology.
X-philes: RuvC and Rap
Our group has a long-term interest in phage endonucleases which target branched DNA recombination intermediates. Specifically we are studying structure-specific endonucleases from phage lambda (Rap) and phage bIL67 from Lactococcus lactis (RuvC) to explore how 4-way Holliday junctions and 3-way replication forks are distinguished at the molecular level.
We are also interested in novel antimicrobial surfaces, peptoids, chelants and other small molecules in partnership with a number of Durham Chemists, including Jas Pal Badyal, Steven Cobb, Karl Coleman, David Hodgson, Ritu Kataky, Matthew, Kitching, Robert Pal, John Sanderson and Gareth Williams.
Research interests
- Evolution of bacterial pathogenicity
- Mechanisms of homologous recombination
- Bacteriophage genome rearrangements
- Horizontal gene transfer
- Antimicrobial surfaces, peptoids and chelants
Research groups
Publications
Chapter in book
Journal Article
- Bryant, Lia, Jamie, Kimberly & Sharples, Gary (2023). Reading Clay: The Temporal and Transformative Potential of Clay in Contemporary Scientific Practice. Journal of Material Culture 28(1): 87–105.
- Azmi, Nur Naqiyah, Mahyudin, Nor Ainy, Wan Omar, Wan Hasyera, Mahmud Ab Rashid, Nor-Khaizura, Ishak, Che Fauziah, Abdullah, Abdul Halim & Sharples, Gary J. (2022). Antibacterial Activity of Clay Soils against Food-Borne Salmonella typhimurium and Staphylococcus aureus. Molecules 27(1): 170.
- Cox, Harrison J., Gibson, Colin P., Sharples, Gary J. & Badyal, Jas Pal S. (2022). Nature‐Inspired Substrate‐Independent Omniphobic and Antimicrobial Slippery Surfaces. Advanced Engineering Materials 24(6): 2101288.
- Paterson, Joy R., Beecroft, Marikka S., Mulla, Raminder S., Osman, Deenah, Reeder, Nancy L., Caserta, Justin A., Young, Tessa R., Pettigrew, Charles A., Davies, Gareth E., Williams, J.A. Gareth & Sharples, Gary J. (2022). Insights into the antibacterial mechanism of action of chelating agents by selective deprivation of iron, manganese and zinc. Applied and Environmental Microbiology
- Cox, Harrison J., Sharples, Gary J. & Badyal, Jas Pal S. (2021). Tea–Essential Oil–Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation. ACS Applied Nano Materials 4(11): 12619-12628.
- Cox, Harrison J. Li, Jing Saini, Preety Paterson, Joy R. Sharples, Gary J. & Badyal, Jas Pal S. (2021). Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces. Journal of Materials Chemistry B 9(12): 2918-2930.
- Fell, Henry G., Baldini, James U.L., Dodds, Ben & Sharples, Gary J. (2020). Volcanism and global plague pandemics: Towards an interdisciplinary synthesis. Journal of Historical Geography 70: 36-46.
- Jamie, Kimberly & Sharples, Gary (2020). The social and material life of medicinal clay: Exploring antimicrobial resistance, medicines' materiality and medicines optimization. Frontiers in Sociology 5: 26.
- Sharples, Gary J., Heddle, Jonathan G., Kozak, Maciej, Taube, Michał, Hughes, Timothy R, Pålsson, Lars-Olof, Bowers, Laura Y., Curtis, Fiona A., Plewka, Jacek, Świątek, Sylwia, Paterson, Joy R., Jolma, Arttu, Yang, Ally W.H., Gittens, William H., Trotter, Alexander J., Balakrishnan, Dhanasekaran & Chakraborti, Soumyananda (2020). A bacteriophage mimic of the bacterial nucleoid-associated protein Fis. Biochemical Journal 477(7): 1345-1362.
- Ritchie, A.W., Cox, H.J., Barrientos-Palomo, S.N., Sharples, G.J. & Badyal, J.P.S. (2019). Bioinspired Multifunctional Polymer–Nanoparticle–Surfactant Complex Nanocomposite Surfaces for Antibacterial Oil–Water Separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 560: 352-359.
- Mulla, R.S., Beecroft, M.S., Pal, R., Aguilar, J.A., Pitarch-Jarque, J., García‐España, E., Lurie-Luke, E., Sharples, G.J. & Williams, J.A.G. (2018). On the antibacterial activity of azacarboxylate ligands: lowered metal ion affinities for bis-amide derivatives of EDTA do not mean reduced activity. Chemistry - A European Journal 24(28): 7137-7148.
- Lobine, D., Cummins, I., Govinden-Soulange, J., Ranghoo-Sanmukhiya, M., Lindsey, K., Chazot, P.L., Ambler, C.A., Grellscheid, S., Sharples, G., Lall, N., Lambrechts, I.A., Lavergne, C. & Howes, M.-J.R. (2018). Medicinal Mascarene Aloe s: An audit of their phytotherapeutic potential. Fitoterapia 124: 120-126.
- Townsend, P.D., Dixon, C.H., Slootweg, E.S., Sukarta O.C.A., Yang, A.W.H., Hughes, T.R., Sharples, G.J., Palsson, L.-O., Takken, F.L.W., Goverse, A. & Cann, M.J. (2018). The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. Journal of Biological Chemistry 293(9): 3218-3233.
- Bolt, Hannah L., Eggimann, Gabriela A., Jahoda, Colin A.B., Zuckermann, Ronald N., Sharples, Gary J. & Cobb, Steven L. (2017). Exploring the links between peptoid antibacterial activity and toxicity. MedChemComm 8(5): 886-896.
- Eissa, A.M., Abdulkarim, A., Sharples, G.J. & Cameron, N.R. (2016). Glycosylated nanoparticles as efficient antimicrobial delivery agents. Biomacromolecules 17(8): 2672-2679.
- Nautiyal, A., Rani, P.S., Sharples, G.J. & Muniyappa, K. (2016). Mycobacterium tuberculosis RuvX is a Holliday junction resolvase formed by dimerisation of the monomeric YqgF nuclease domain. Molecular Microbiology 100(4): 656-674.
- Fenyk, S., Dixon, C.H., Kittens, W.H., Townsend, P.D., Sharpies, G.J., Pålsson, L.-O., Takken, F.L.W. & Cann, M.J. (2016). The tomato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor I-2 couples DNA-Binding to Nucleotide-Binding Domain Nucleotide Exchange. Journal of Biological Chemistry 291(3): 1137-1147.
- Joubert, Fanny, Yeo, R. Paul, Sharples, Gary J., Musa, Osama M., Hodgson, David R. W. & Cameron, Neil R. (2015). Preparation of an antibacterial poly(ionic liquid) graft copolymer of hydroxyethyl cellulose. Biomacromolecules 16(12): 3970-3979.
- Fenyk, Stepan, Townsend, Philip D., Dixon, Christopher H., Spies, Gerhard B., de San Eustaquio Campillo, Alba, Slootweg, Erik J., Westerhof, Lotte B., Gawehns, Fleur K.K., Knight, Marc R., Sharples, Gary J., Goverse, Aska, Pålsson, Lars-Olof, Takken, Frank L.W. & Cann, Martin J. (2015). The Potato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor Rx1 is a Pathogen Dependent DNA-Deforming Protein. Journal of Biological Chemistry 290(41): 24945-24960.
- Joubert, Fanny, Sharples, Gary J., Musa, Osama M., Hodgson, David R. W. & Cameron, Neil R. (2015). Preparation, properties, and antibacterial behavior of a novel cellulose derivative containing lactam groups. Journal of Polymer Science Part A: Polymer Chemistry 53(1): 68-78.
- Curtis, F.A., Malay, A.D., Trotter, A.J., Wilson, L.A., Barradell-Black, M.M., Bowers, L.Y., Reed, P., Hillyar, C.R.T., Yeo, R.P., Sanderson, J.M., Heddle, J.G. & Sharples, G.J. (2014). Phage Orf family recombinases: conservation of activities and involvement of the central channel in DNA binding. PLoS One 9(8): e102454.
- Matsubara, K., Malay, A.D., Curtis, F.A., Sharples, G.J. & Heddle, J.G. (2013). Structural and functional characterization of the Redβ recombinase from bacteriophage λ. PLOS ONE 8(11): e78869.
- Green, V., Curtis, F.A., Sedelnikova, S., Rafferty, J.B. & Sharples, G. (2013). Mutants of phage bIL67 RuvC with enhanced Holliday junction binding selectivity and resolution symmetry. Molecular Microbiology 89(6): 1240-1258.
- Wood, T.J., Hurst, G.A., Schofield, W.C.E., Thompson, R.L., Oswald, G., Evans, J.S.O., Sharples, G.J., Pearson, C., Petty, M.C. & Badyal, J.P.S. (2012). Electroless deposition of multi-functional zinc oxide surfaces displaying photoconductive, superhydrophobic, photowetting, and antibacterial properties. Journal of Materials Chemistry 22(9): 3859-3867.
- Curtis F.A., Reed, P., Wilson, L.A., Bowers, L.Y., Yeo, P., Sanderson, J.M., Walmsley, A.R. & Sharples, G.J. (2011). The C-terminus of the phage lambda Orf recombinase is involved in DNA binding. Journal of Molecular Recognition 24(2): 330-340.
- Carrasco, B., Cañas, C., Sharples, G.J., Alonso, J.C. & Ayora, S. (2009). The N-terminal region of the RecU Holliday junction resolvase is essential for homologous recombination. Journal of Molecular Biology 390(1): 1-9.
- Sharples, G.J. (2009). For absent friends: life without recombination in mutualistic gamma-proteobacteria. Trends in Microbiology 17(6): 233-242.
- Pan, P.-S., Curtis, F.A., Carroll, C.L., Medina, I., Rodrigeuz, R., Liotta, L.A., Sharples, G.J. & McAlpine, S.R. (2006). Novel antibiotics: C-2 symmetrical macrocycles inhibiting Holliday junction DNA binding by E. coli RuvC. Bioorganic & Medicinal Chemistry 14(14): 4731-4739.
- Sanchez, H., Kidane, D., Reed, P., Curtis, F.A., Cozar, M.C., Graumann, P.L., Sharples, G.J. & Alonso, J.C. (2005). The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. Genetics 171: 873-883.
- Borges-Walmsley, M.I., Du, D., McKeegan, K.S., Sharples, G.J. & Walmsley, A.R. (2005). VceR regulates the vceCAB drug efflux pump operon of Vibrio cholerae by alternating between mutually exclusive conformations that bind either drugs or promoter DNA. Journal of Molecular Biology 349(2): 387-400.
- Curtis, F.A., Reed, P. & Sharples, G.J. (2005). Evolution of a phage RuvC endonuclease for resolution of both Holliday and branched DNA junctions. Molecular Microbiology 55(5): 1332-1345.
- Wen, Q., Mahdi, A.A., Briggs, G.S., Sharples, G.J. & Lloyd, R.G. (2005). Conservation of RecG activity from pathogens to hyperthermophiles. DNA Repair 4: 23-31.
- Maxwell, K. L., Reed, P., Zhang, R. G., Beasley, S., Walmsley, A. R., Curtis, F. A., Joachimiak, A., Edwards, A. M. & Sharples, G. J. (2005). Functional similarities between phage lambda Orf and Escherichia coli RecFOR in initiation of genetic exchange. Proceedings of the National Academy of Sciences of the United States of America 102(32): 11260-11265.
- Liotta, L.A., Medina, I., Robinson, J.L., Carroll, C.L., Pan, P.-S., Corral, R., Cook, K.M., Johnston, J.V.C., Curtis, F.A., Sharples, G.J. & McAlpine, S.R. (2004). Novel antibiotics: second generation macrocyclic peptides designed to trap Holliday junctions. Tetrahedron Letters 45: 8447-8450.
- Sharples, G. J., Curtis, F. A., McGlynn, P. & Bolt, E. L. (2004). Holliday Junction Binding and Resolution by the Rap Structure-specific Endonuclease of Phage lambda. Journal of Molecular Biology 340(4): 739-751.
- Moore, T., Sharples, G.J. & Lloyd, R.G. (2004). DNA binding by the meningococcal RdgC protein associated with pilin antigenic variation. Journal of Bacteriology 186: 870-874.
- Moore, T., McGlynn, P., Ngo, H.P., Sharples, G.J. & Lloyd, R.G. (2003). The RdgC protein of Escherichia coli binds DNA and counters a toxic effect of RecFOR in strains lacking the replication restart protein PriA. EMBO Journal 22: 735-745.
- Loughlin, M.F., Barnard, F.M., Jenkins, D., Sharples, G.J. & Jenks, P.J. (2003). Helicobacter pylori mutants defective in RuvC Holliday junction resolvase display reduced macrophage survival and spontaneous clearance from the murine gastric mucosa. Infection and Immunity 71: 2022-2031.
- Rafferty, J.B., Bolt, E.L., Muranova, T.A., Sedelnikova, S.E., Leonard, P., Pasquo, A., Baker, P.J., Rice, D.W., Sharples, G.J. & Lloyd, R.G. (2003). The structure of Escherichia coli RusA endonuclease reveals a new Holliday junction DNA binding fold. Structure 11: 1557-1567.
- Mahdi, A.A., Briggs, G.S., Sharples, G.J., Wen, Q. & Lloyd, R.G. (2003). A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins. EMBO Journal 22: 724-734.
- Ingleston, S.M., Dickman, M.J., Grasby, J.A., Hornby, D.P., Sharples, G.J. & Lloyd, R.G. (2002). Holliday junction binding and processing by the RuvA protein of Mycoplasma pneumoniae. European Journal of Biochemistry 269: 1525-1533.
- Sharples, G. J., Bolt, E. L. & Lloyd, R. G. (2002). RusA proteins from the extreme thermophile Aquifex aeolicus and lactococcal phage r1t resolve Holliday junctions. Molecular Microbiology 44(2): 549-559.
- Sharples, G.J. (2001). The X philes: structure-specific endonucleases that resolve Holliday junctions. Mol Microbiol 39: 823-834.
- Bolt, E.L., Lloyd, R.G. & Sharples, G.J. (2001). Genetic analysis of an archaeal Holliday junction resolvase in Escherichia coli. Journal of Molecular Biology 310(3): 577-589.
- Ingleston, S.M., Sharples, G.J. & Lloyd, R.G. (2000). The acidic pin of RuvA modulates Holliday junction binding and processing by the RuvABC resolvasome. EMBO Journal 19: 6266-6274.
- Bolt, E.L., Sharples, G.J. & Lloyd, R.G. (2000). Analysis of conserved basic residues associated with DNA binding (Arg69) and catalysis (Lys76) by the RusA Holliday junction resolvase. Journal of Molecular Biology 304: 165-176.
- Bolt, E.L., Sharples, G.J. & Lloyd, R.G. (1999). Identification of three aspartic acid residues essential for catalysis by the RusA Holliday junction resolvase. Journal of Molecular Biology 286: 403-415.
- Sharples, G.J., Corbett, L.M., McGlynn, P. & Bolt, E.L. (1999). DNA structure specificity of Rap endonuclease. Nucleic Acids Research 27: 4121-4127.
- Sharples, G.J., Ingleston, S.M. & Lloyd, R.G. (1999). Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. Journal of Bacteriology 181: 5543-5550.
- Rafferty, J.B., Ingleston, S.M., Hargreaves, D., Artymiuk, P.J., Sharples, G.J., Lloyd, R.G. & Rice, D.W. (1998). Structural similarities between Escherichia coli RuvA protein and other DNA-binding proteins and a mutational analysis of its binding to the Holliday junction. J. Mol. Biol 278: 105-116.
- Hagan, N.F., Vincent, S.D., Ingleston, S.M., Sharples, G.J., Bennett, R.J., West, S.C. & Lloyd, R.G. (1998). Sequence-specificity of Holliday junction resolution: identification of RuvC mutants defective in metal binding and target site recognition. Journal of Molecular Biology 281: 17-29.
- Sharples, G.J., Corbett, L.M. & Graham, I.R. (1998). Lambda Rap protein is a structure-specific endonuclease involved in phage recombination. Proc Natl Acad Sci USA 95: 13507-13512.
- F. Martin, G.J. Sharples, R.G. Lloyd, S. Eiler, D. Moras, J. Gangloff & G. Eriani (1997). Characterization of a thermosensitive Escherichia coli aspartyl-tRNA synthetase mutant. Journal of Bacteriology 179(11): 3691-3696.
- G.J. Sharples & L.M. Corbett (1997). Recombination is unaffected by mutation of E. coli mfd. Microbiology 143: 690-691.
- L. Ryder, G.J. Sharples & R.G. Lloyd (1996). Recombination-dependent growth in exonuclease-depleted recBC sbcBC strains of Escherichia coli K-12. Genetics 143(3): 1101-1114.
- A.A. Mahdi, G.J. Sharples, T.N. Mandal & R.G. Lloyd (1996). Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82. J. Mol. Biol 257(3): 561-573.
- J.B. Rafferty, S.E. Sedelnikova, D. Hargreaves, P.J. Artymiuk, P.J. Baker, G.J. Sharples, A.A. Mahdi, R.G. Lloyd & D.W. Rice (1996). Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction. Science 274(5286): 415-421.
- B. Martin, G.J. Sharples, O. Humbert, R.G. Lloyd & J.P. Claverys (1996). The mmsA locus of Streptococcus pneumoniae encodes a RecG-like protein involved in DNA repair and in three-strand recombination. Mol. Microbiol 19(5): 1035-1045.
- G.J. Sharples (1996). Haemophilus virulence. Microbiology 142 ( Pt 4): 717.
- G.J. Sharples & D.R. Leach (1995). Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol. Microbiol 17(6): 1215-1217.
- G.J. Sharples, M.C. Whitby, L. Ryder & R.G. Lloyd (1994). A mutation in helicase motif III of E. coli RecG protein abolishes branch migration of Holliday junctions. Nucleic Acids Research 22(3): 308-313.
- G.J. Sharples, S.N. Chan, A.A. Mahdi, M.C. Whitby & R.G. Lloyd (1994). Processing of intermediates in recombination and DNA repair: identification of a new endonuclease that specifically cleaves Holliday junctions. EMBO Journal 13(24): 6133-6142.
- H.J. Dunderdale, G.J. Sharples, R.G. Lloyd & S.C. West (1994). Cloning, overexpression, purification, and characterization of the Escherichia coli RuvC Holliday junction resolvase. Journal of Biological Chemistry 269(7): 5187-5194.
- T.N. Mandal, A.A. Mahdi, G.J. Sharples & R.G. Lloyd (1993). Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of ruvA, ruvB, and ruvC mutations. Journal of Bacteriology 175(14): 4325-4334.
- Sharples, G.J. & Lloyd, R.G. (1993). Location of the Bacillus subtilis sbcD gene downstream of addAB, the analogues of E. coli recBC. Nucleic acids research 21(8): 2010.
- G.J. Sharples & R.G. Lloyd (1993). An E. coli RuvC mutant defective in cleavage of synthetic Holliday junctions. Nucleic Acids Research 21(15): 3359-3364.
- R.G. Lloyd & G.J. Sharples (1993). Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli. Nucleic Acids Research 21(8): 1719-1725.
- R.G. Lloyd & G.J. Sharples (1993). Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO Journal 12(1): 17-22.
- R.G. Lloyd & G.J. Sharples (1992). Genetic analysis of recombination in prokaryotes. Current Opinion in Genetics and Development 2(5): 683-690.
- G.J. Sharples & R.G. Lloyd (1991). Location of a mutation in the aspartyl-tRNA synthetase gene of Escherichia coli K12. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 264(3): 93-96.
- G.J. Sharples & R.G. Lloyd (1991). Resolution of Holliday junctions in Escherichia coli: identification of the ruvC gene product as a 19-kilodalton protein. Journal of Bacteriology 173(23): 7711-7715.
- B. Connolly, C.A. Parsons, F.E. Benson, H.J. Dunderdale, G.J. Sharples, R.G. Lloyd & S.C. West (1991). Resolution of Holliday junctions in vitro requires the Escherichia coli ruvC gene product. Proceedings of the National Academy of Sciences of the United States of America 88(14): 6063-6067.
- H.J. Dunderdale, F.E. Benson, C.A. Parsons, G.J. Sharples, R.G. Lloyd & S.C. West (1991). Formation and resolution of recombination intermediates by E. coli RecA and RuvC proteins. Nature 354(6354): 506-510.
- R.G. Lloyd & G.J. Sharples (1991). Molecular organization and nucleotide sequence of the recG locus of Escherichia coli K-12. Journal of Bacteriology 173(21): 6837-6843.
- G.J. Sharples & R.G. Lloyd (1990). A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Research 18(22): 6503-6508.
- G.J. Sharples, F.E. Benson, G.T. Illing & R.G. Lloyd (1990). Molecular and functional analysis of the ruv region of Escherichia coli K-12 reveals three genes involved in DNA repair and recombination. Molecular Genetics and Genomics 221(2): 219-226.
- F.E. Benson, G.T. Illing, G.J. Sharples & R.G. Lloyd (1988). Nucleotide sequencing of the ruv region of Escherichia coli K-12 reveals a LexA regulated operon encoding two genes. Nucleic Acids Research 16(4): 1541-1549.