Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1408
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences | |
DRMC Co-Director (Health Data Science) in the Faculty of Social Sciences and Health | |
Co-Director (Biostatistics & Apprenticeships) in the Durham Research Methods Centre |
Research interests
- Mixture models
- Nonparametric regression
- Principal curves
- Random effect modelling
Esteem Indicators
- 2000: Associate Editor, Statistical Modelling:
- 2000: Associate Editor, Advances in Statistical Analysis:
- 2000: Member of the Executive Committee of the SMS: The Statistical Modelling Society (SMS) is an international society with the purpose of promoting and encouraging statistical modelling, and which organizes the annual conference "International Workshop on Statistical Modelling". I have been elected member of the SMS Executive Committee 2011-12 and 2015-18, and continue to be member on the Committee as the Representative of the WG for Communication
Publications
Chapter in book
- A Distance-Based Statistic for Goodness-of-Fit AssessmentJayakumari, D., Einbeck, J., Hinde, J., & Moral, R. A. (2024). A Distance-Based Statistic for Goodness-of-Fit Assessment. In J. Einbeck, H. Maeng, E. Ogundimu, & K. Perrakis (Eds.), Developments in Statistical Modelling (pp. 263-268). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-65723-8_40
- Estimating Dose and Time of Exposure from a Protein-Based Radiation BiomarkerCai, Y., Einbeck, J., Barnard, S., & Ainsbury, E. (2024). Estimating Dose and Time of Exposure from a Protein-Based Radiation Biomarker. In Developments in Statistical Modelling (pp. 239-245). Springer. https://doi.org/10.1007/978-3-031-65723-8_37
- Tools for Assessing Goodness of Fit of GLMs: Case Studies in EntomologyJayakumari, D., Hinde, J., Einbeck, J., & Moral, R. A. (2024). Tools for Assessing Goodness of Fit of GLMs: Case Studies in Entomology. In Modelling Insect Populations in Agricultural Landscapes (pp. 211-235). Springer International Publishing. https://doi.org/10.1007/978-3-031-43098-5_11
- Elicitation of Priors for Intervention Effects in Educational Trial DataZhang, Q., Uwimpuhwe, G., Vallis, D., Singh, A., Coolen-Maturi, T., & Einbeck, J. (2024). Elicitation of Priors for Intervention Effects in Educational Trial Data. In J. Einbeck, H. Maeng, E. Ogundimu, & K. Perrakis (Eds.), Developments in Statistical Modelling (pp. 28-33). Springer. https://doi.org/10.1007/978-3-031-65723-8_5
- Uncertainty Quantification in Lasso-Type Regularization ProblemsBasu, T., Einbeck, J., & Troffaes, M. C. (2021). Uncertainty Quantification in Lasso-Type Regularization Problems. In Optimization Under Uncertainty with Applications to Aerospace Engineering (pp. 81-109). Springer Verlag. https://doi.org/10.1007/978-3-030-60166-9_3
- Estimating Exposure Fraction from Radiation Biomarkers: A Comparison of Frequentist and Bayesian ApproachesErrington, A., Einbeck, J., & Cumming, J. (2021). Estimating Exposure Fraction from Radiation Biomarkers: A Comparison of Frequentist and Bayesian Approaches. In M. Vasile & D. Quagliarella (Eds.), Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications (pp. 393-405). Springer Verlag. https://doi.org/10.1007/978-3-030-80542-5_24
- On the Use of Random Effect Models for Radiation BiodosimetryEinbeck, J., Ainsbury, E., Barnard, S., Oliveira, M., Manning, G., Puig, P., & Badie, C. (2017). On the Use of Random Effect Models for Radiation Biodosimetry. In E. Ainsbury, M. Calle, E. Cardis, J. Einbeck, G. Gómez, & P. Puig (Eds.), Extended abstracts Fall 2015 : Biomedical Big Data ; Statistics for Low Dose Radiation Research. (pp. 89-94). Springer Verlag. https://doi.org/10.1007/978-3-319-55639-0_15
- Hotspots in HindsightJulian, B. R., Foulger, G. R., Hatfield, O., Jackson, S. E., Simpson, E., Einbeck, J., & Moore, A. (2015). Hotspots in Hindsight. In The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson (pp. 105-121). The Geological Society of America / AGU. https://doi.org/10.1130/2015.2514%2808%29
- Representing complex data using localized principal components with application to astronomical data.Einbeck, J., Evers, L., & Bailer-Jones, C. (2008). Representing complex data using localized principal components with application to astronomical data. In A. Gorban, B. Kegl, D. Wunsch, & A. Zinovyev (Eds.), Lecture Notes in Computational Science and Engineering. (pp. 180-204). Springer-Verlag. https://doi.org/10.1007/978-3-540-73750-6_7
Conference Paper
- Using linear mixed models to compare a self-assessed frailty score with clinician assessed scores in patients approaching major surgerySayari, M., Durrand, J., Taylor, C., Einbeck, J., Kharatikoopaei, E., Craig, J., & Griffiths, N. (2024, July 15). Using linear mixed models to compare a self-assessed frailty score with clinician assessed scores in patients approaching major surgery. Presented at International Workshop on Statistical Modelling, Durham.
- A multilevel multivariate response model for data with latent structuresZhang, Y., Einbeck, J., & Drikvandi, R. (2023, July 21). A multilevel multivariate response model for data with latent structures. Presented at The 37th International Workshop on Statistical Modelling, Dortmund, Germany.
- Individual participant data meta-analysis: pooled effect of EEF funded educational trials on low baseline attaining groupUwimpuhwe, G., Singh, A., Akhter, N., Ashraf, B., Coolen-Maturi, T., Robinson, T., Higgins, S., & Einbeck, J. (2023). Individual participant data meta-analysis: pooled effect of EEF funded educational trials on low baseline attaining group. In E. Bergherr, A. Groll, & A. Mayr (Eds.), 37th International Workshop on Statistical Modelling - Proceedings book (pp. 640-643). Statistical Modelling Society.
- A Robust Bayesian Approach for Causal Inference ProblemsBasu, T., Troffaes, M. C. M., & Einbeck, J. (2023). A Robust Bayesian Approach for Causal Inference Problems. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty (pp. 359-371). Springer Nature. https://doi.org/10.1007/978-3-031-45608-4_27
- Simultaneous linear dimension reduction and clustering with flexible variance matricesZhang, Y., & Einbeck, J. (2022). Simultaneous linear dimension reduction and clustering with flexible variance matrices. In N. Torelli, R. Bellio, & V. Muggeo (Eds.), Proceedings of the 36th International Workshop on Statistical Modelling (pp. 612-617). EUT Edizioni Università di Trieste.
- Bayesian Adaptive Selection Under Prior IgnoranceBasu, T., Troffaes, M. C., & Einbeck, J. (2021). Bayesian Adaptive Selection Under Prior Ignorance. In M. Vasile & D. Quagliarella (Eds.), Space Technology Proceedings (pp. 365-378). Springer Verlag. https://doi.org/10.1007/978-3-030-80542-5_22
- A sensitivity analysis and error bounds for the adaptive lassoBasu, T., Einbeck, J., & Troffaes, M. (2020). A sensitivity analysis and error bounds for the adaptive lasso. In I. Irigoien, D. .-J. Lee, J. Martinez-Minaya, & M. X. Rodriguez-Alvarez (Eds.), Proceedings of the 35th International Workshop on Statistical Modelling. (pp. 278-281). Universidad del Pais Vasco.
- Binary Credal Classification Under Sparsity ConstraintsBasu, T., Troffaes, M. C., & Einbeck, J. (2020). Binary Credal Classification Under Sparsity Constraints. In M.-J. Lesot, S. Vieira, M. Z. Reformat, J. P. Carvalho, A. Wilbik, B. Bouchon-Meunier, & R. R. Yager (Eds.), Information processing and management of uncertainty in knowledge-based systems : 18th International Conference, IPMU 2020, Lisbon, Portugal, June 15–19, 2020, proceedings, Part II. (pp. 82-95). Springer Verlag. https://doi.org/10.1007/978-3-030-50143-3_7
- Robust uncertainty quantification for measurement problems with limited informationBasu, T., Einbeck, J., Troffaes, M. C., & Forbes, A. (2019, July 3 – 2019, July 6). Robust uncertainty quantification for measurement problems with limited information [Conference paper]. Presented at ISIPTA 2019, Ghent, Belgium.
- A sensitivity analysis of adaptive lassoBasu, T., Einbeck, J., & Troffaes, M. C. (2019). A sensitivity analysis of adaptive lasso [Conference paper]. Presented at Innovations in Data and Statistical Sciences (INDSTATS 2019), Mumbai, India.
- Box-Cox response transformations for random effect modelsAlmohaimeed, A., & Einbeck, J. (2018). Box-Cox response transformations for random effect models. In Proceedings of the 33rd International Workshop on Statistical Modelling (pp. 1-6). University of Bristol.
- Con fidence intervals for posterior intercepts, with application to the PIAAC literacy surveyEinbeck, J., Gray, E., Sofroniou, N., Marques da Silva Junior, A., & Gledhill, J. (2017). Con fidence intervals for posterior intercepts, with application to the PIAAC literacy survey. In M. Grzegorczyk & G. Ceoldo (Eds.), Proceedings of the 32nd International Workshop on Statistical Modelling : Groningen, Netherlands, 3-7 July, 2017. (pp. 217-222). University of Groningen.
- Gradient test for generalised linear models with random effectsda Silva-Junior, A., Einbeck, J., & Craig, P. (2016). Gradient test for generalised linear models with random effects. In J. F. Dupuy & J. Josse (Eds.), Proceedings of the 31st International Workshop on Statistical Modelling. July 4-8, 2016, Rennes, France. (pp. 213-218). Statistical Modelling Society.
- A diagnostic plot for assessing model fit in count data modelsEinbeck, J., & Wilson, P. (2016). A diagnostic plot for assessing model fit in count data models. In J. F. Dupuy & J. Josse (Eds.), Proceedings of the 31st International Workshop on Statistical Modelling. July 4-8, 2016, Rennes, France. (pp. 103-108). Statistical Modelling Society.
- On statistical testing and mean parameter estimation for zero-modification in count data regressionWilson, P., & Einbeck, J. (2016). On statistical testing and mean parameter estimation for zero-modification in count data regression. In J. F. Dupuy & J. Josse (Eds.), Proceedings of the 31st International Workshop on Statistical Modelling. July 4-8, 2016, Rennes, France. (pp. 327-332). Statistical Modelling Society.
- A simple and intuitive test for number-inflation or number-deflationWilson, P., & Einbeck, J. (2015). A simple and intuitive test for number-inflation or number-deflation. In H. Wagner & H. Friedl (Eds.), Proceedings of the 30th International Workshop on Statistical Modelling. Linz, Austria, 6-10 July 2015. (pp. 299-302). Statistical Modelling Society.
- A study of online and blockwise updating of the EM algorithm for Gaussian mixturesEinbeck, J., & Bonetti, D. (2014). A study of online and blockwise updating of the EM algorithm for Gaussian mixtures. In T. Kneib, F. Sobotka, J. Fahrenholz, & H. Irmer (Eds.), 29th International Workshop on Statistical Modelling, 14-18 July 2014, Göttingen, Germany ; proceedings. (pp. 35-38). Statistical Modelling Society.
- Bayesian shape modelling of cross-sectional geological dataTsiftsi, T., Jermyn, I., & Einbeck, J. (2014). Bayesian shape modelling of cross-sectional geological data. In K. Thomas, S. Fabian, F. Jan, & I. Henriette (Eds.), 29th International Workshop on Statistical Modelling, 14-18 July 2014, Göttingen, Germany ; proceedings. (pp. 161-164). Statistical Modelling Society.
- Bivariate Estimation of Distribution Algorithms for Protein Structure PredictionBonetti, D., Delbem, A., & Einbeck, J. (2014). Bivariate Estimation of Distribution Algorithms for Protein Structure Prediction. In T. Kneib, F. Sobotka, J. Fahrenholz, & H. Irmer (Eds.), 29th International Workshop on Statistical Modelling, 14-18 July 2014, Göttingen, Germany ; proceedings. (pp. 15-18). Statistical Modelling Society.
- On the computation of the correlation integral for fractal dimension estimationKalantan, Z., & Einbeck, J. (2012). On the computation of the correlation integral for fractal dimension estimation. In IEEE conference publications (pp. 80-85). https://doi.org/10.1109/icssbe.2012.6396531
- Penalized regression on principal manifolds with application to combustion modellingEinbeck, J., Isaac, B., Evers, L., & Parente, A. (2012). Penalized regression on principal manifolds with application to combustion modelling. In A. Komarek & S. Nagy (Eds.), 27th International Workshop on Statistical Modelling, 16-20 July 2012, Prague, Czech Republic ; proceedings. (pp. 117-122). Statistical Modeling Society.
- Generative linear mixture modellingLawson, A., & Einbeck, J. (2012). Generative linear mixture modelling. In A. Komarek & S. Nagy (Eds.), 27th International Workshop on Statistical Modelling, 16-20 July 2012, Prague, Czech Republic ; proceedings. (pp. 595-600). Statistical Modeling Society.
- Multivariate regression smoothing through the 'fallling net'Taylor, J., & Einbeck, J. (2011). Multivariate regression smoothing through the ’fallling net’. In D. Conesa, A. Forte, A. Lopez-Quilez, & F. Munoz (Eds.), 26th International Workshop on Statistical Modelling, 5-11 July 2011, Valencia, Spain ; proceedings. (pp. 597-602). Statistical Modelling Society.
- Localized regression on principal manifoldsEinbeck, J., & Evers, L. (2010). Localized regression on principal manifolds (A. Bowman, Ed.). University of Glasgow.
- Data compression and regression based on local principal curvesEinbeck, J., Evers, L., & Hinchliff, K. (2010). Data compression and regression based on local principal curves. In A. Fink, B. Lausen, W. Seidel, & A. Ultsch (Eds.), Advances in data analysis, data handling and business intelligence. (pp. 701-712). Springer Verlag. https://doi.org/10.1007/978-3-642-01044-6_64
- Strategies for local smoothing in high dimensions: using density thresholds and adapted GCVTaylor, J., & Einbeck, J. (2010). Strategies for local smoothing in high dimensions: using density thresholds and adapted GCV (A. Bowman, Ed.). University of Glasgow.
- Constructing Economic Summary Indexes via Principal CurvesZayed, M., & Einbeck, J. (2010). Constructing Economic Summary Indexes via Principal Curves (Y. Lechevallier & G. Saporta, Eds.). Springer Verlag.
- League tables for literacy survey data based on random effect modelsSofroniou, N., Hoad, D., & Einbeck, J. (2008). League tables for literacy survey data based on random effect models. In P. Eilers (Ed.), 23rd International Workshop on Statistical Modelling, 7-11 July 2008, Utrecht ; proceedings. (pp. 402-405). Statistical Modelling Society.
- A comparative study of nonparametric derivative estimators.Newell, J., & Einbeck, J. (2007). A comparative study of nonparametric derivative estimators. In J. del Castillo, A. Espinal, & P. Puig (Eds.), Proceedings of the IWSM (pp. 453-456). IDESCAT.
- Smoothing, Sampling, and Basu's elephantsEinbeck, J., Augustin, T., & Singer, J. M. (2007). Smoothing, Sampling, and Basu’s elephants. In J. del Castillo, A. Espinal, & P. Puig (Eds.), Proceedings of the IWSM (pp. 245-248). IDESCAT.
- The fitting of multifunctions: an approach to nonparametric multimodal regressionEinbeck, J., & Tutz, G. (2006). The fitting of multifunctions: an approach to nonparametric multimodal regression. In A. Rizzi & M. Vichi (Eds.), COMPSTAT 2006 : proceedings in computational statistics, 17th symposium held in Rome, Italy, 2006. (pp. 1251-1258). Physica-Verlag.
- Analyzing Irish suicide rates with mixture modelsSofroniou, N., Einbeck, J., Hinde, J., & Newell, J. (2006). Analyzing Irish suicide rates with mixture models. In Proceedings of the 21st International Workshop on Statistical Modelling: IWSM 2006, 3-7 July 2006, Galway, Ireland. (pp. 474-481). National University of Ireland.
- Model free endurance markers based on the second derivative of blood lactate curvesNewell, J., Einbeck, J., Madden, N., & McMillan, K. (2005). Model free endurance markers based on the second derivative of blood lactate curves. In A. R. Francis, K. M. Matawie, A. Oshlack, & G. K. Smyth (Eds.), Statistical solutions to modern problems ; proceedings of the 20th International Workshop on Statistical Modelling. Sydney, Australia, July 10-15, 2005. (pp. 357-364). Statistical Modelling Society.
- Exploring Multivariate Data Structures with Local Principal CurvesEinbeck, J., Tutz, G., & Evers, L. (2005). Exploring Multivariate Data Structures with Local Principal Curves. In C. Weihs & W. Gaul (Eds.), Proceedings of the 28th Annual Conference of the Gesellschaft für Klassifikation, 9-11 March 2004, University of Dortmund. (pp. 256-263). Springer Verlag.
Conference Proceeding
- Proceedings of the 38th International Workshop on Statistical ModellingEinbeck, J., Drikvandi, R., Karagiannis, G., Perrakis, K., & Zhang, Q. (Eds.). (2024). Proceedings of the 38th International Workshop on Statistical Modelling. Durham University.
Doctoral Thesis
- Local Smoothing Methods for the Analysis of Multivariate Complex Data StructuresEinbeck, J. (2003). Local Smoothing Methods for the Analysis of Multivariate Complex Data Structures [Thesis]. Institut fuer Statistik, LMU Muenchen. http://www.maths.dur.ac.uk/~dma0je/Thesis/
Edited book
- Developments in Statistical ModellingEinbeck, J., Maeng, H., Ogundimu, E., & Perrakis, K. (Eds.). (2024). Developments in Statistical Modelling. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-65723-8
- Extended Abstracts Fall 2015. Biomedical Big Data; Statistics for Low Dose Radiation ResearchAinsbury, E., Calle, M., Cardis, E., Einbeck, J., Gómez, G., & Puig, P. (Eds.). (2017). Extended Abstracts Fall 2015. Biomedical Big Data; Statistics for Low Dose Radiation Research. Springer Verlag.
- Proceedings of the 21st International Workshop on Statistical Modelling. Galway, Ireland, 3-7 July 2006Hinde, J., Einbeck, J., & Newell, J. (Eds.). (2006). Proceedings of the 21st International Workshop on Statistical Modelling. Galway, Ireland, 3-7 July 2006. National University of Ireland, Galway.
Journal Article
- Preferences for Psychological Therapy or Support Within an ARMS Psychological Therapies Trial: The Importance of Targeted Intervention for Unusual Sensory ExperiencesHamilton, J., Singh, A., Gibbs, C., Barclay, N. A., Birkett, L., Boyle, C., Brandon, T., Dudley, R., Einbeck, J., Larry, V., Simpson, J., Dodgson, G., & Fernyhough, C. (2025). Preferences for Psychological Therapy or Support Within an ARMS Psychological Therapies Trial: The Importance of Targeted Intervention for Unusual Sensory Experiences. Early Intervention in Psychiatry, 19(4), Article e70035. https://doi.org/10.1111/eip.70035
- A two-level multivariate response model for data with latent structuresZhang, Y., Einbeck, J., & Drikvandi, R. (2025). A two-level multivariate response model for data with latent structures. Statistical Modelling. Advance online publication. https://doi.org/10.1177/1471082X241313024
- A fresh look at mean-shift based modal clusteringAmeijeiras-Alonso, J., & Einbeck, J. (2024). A fresh look at mean-shift based modal clustering. Advances in Data Analysis and Classification, 18(4), 1067-1095. https://doi.org/10.1007/s11634-023-00575-1
- A Comparison of Threshold-Free Measures for Assessing the Effectiveness of Educational InterventionsEinbeck, J., Coolen-Maturi, T., Uwimpuhwe, G., & Singh, A. (2024). A Comparison of Threshold-Free Measures for Assessing the Effectiveness of Educational Interventions. The Journal of Experimental Education. Advance online publication. https://doi.org/10.1080/00220973.2024.2405738
- Lack of effect of a parent‐delivered early language intervention: Evidence from a randomised controlled trial completed during COVID‐19Burgoyne, K., Hargreaves, S., Akhter, N., Cramman, H., Eerola, P., Einbeck, J., & Menzies, V. (2024). Lack of effect of a parent‐delivered early language intervention: Evidence from a randomised controlled trial completed during COVID‐19. JCPP Advances. Advance online publication, Article e12279. https://doi.org/10.1002/jcv2.12279
- Directed Clustering of Multivariate Data Based on Linear or Quadratic Latent Variable ModelsZhang, Y., & Einbeck, J. (2024). Directed Clustering of Multivariate Data Based on Linear or Quadratic Latent Variable Models. Algorithms, 17(8), Article 358. https://doi.org/10.3390/a17080358
- A Versatile Model for Clustered and Highly Correlated Multivariate DataZhang, Y., & Einbeck, J. (2024). A Versatile Model for Clustered and Highly Correlated Multivariate Data. Journal of Statistical Theory and Practice, 18(1), Article 5. https://doi.org/10.1007/s42519-023-00357-0
- The effects of lockdown during the COVID-19 pandemic on fetal movement profilesReissland, N., Ustun, B., & Einbeck, J. (2024). The effects of lockdown during the COVID-19 pandemic on fetal movement profiles. BMC Pregnancy and Childbirth, 24(1), 56. https://doi.org/10.1186/s12884-024-06259-8
- A Sequential Cross-Sectional Analysis Producing Robust Weekly COVID-19 Rates for South East Asian CountriesAlmohaimeed, A., & Einbeck, J. (2023). A Sequential Cross-Sectional Analysis Producing Robust Weekly COVID-19 Rates for South East Asian Countries. Viruses, 15(7), Article 1572. https://doi.org/10.3390/v15071572
- Use of a targeted, computer/web-based guided self-help psychoeducation toolkit for distressing hallucinations (MUSE) in people with an at-risk mental state for psychosis: protocol for a randomised controlled feasibility trialHamilton, J., Arnott, B., Aynsworth, C., Barclay, N. A., Birkett, L., Brandon, T., Dixon, L., Dudley, R., Einbeck, J., Gibbs, C., Kharatikoopaei, E., Simpson, J., Dodgson, G., & Fernyhough, C. (2023). Use of a targeted, computer/web-based guided self-help psychoeducation toolkit for distressing hallucinations (MUSE) in people with an at-risk mental state for psychosis: protocol for a randomised controlled feasibility trial. BMJ Open, 13(6), Article e076101. https://doi.org/10.1136/bmjopen-2023-076101
- Association between Hyperemesis Gravidarum in pregnancy on postnatal ability of infants to attend to a play task with their motherReissland, N., Matthewson, J., & Einbeck, J. (2023). Association between Hyperemesis Gravidarum in pregnancy on postnatal ability of infants to attend to a play task with their mother. Infant Behavior and Development, 71. https://doi.org/10.1016/j.infbeh.2023.101823
- Cumulant-Based Goodness-of-Fit Tests for the Tweedie, Bar-Lev and Enis Class of DistributionsBar-Lev, S. K., Batsidis, A., Einbeck, J., Liu, X., & Ren, P. (2023). Cumulant-Based Goodness-of-Fit Tests for the Tweedie, Bar-Lev and Enis Class of Distributions. Mathematics, 11(7), Article 1603. https://doi.org/10.3390/math11071603
- Biodose Tools: an R shiny application for biological dosimetryHernández, A., Endesfelder, D., Einbeck, J., Puig, P., Benadjaoud, M. A., Higueras, M., Ainsbury, E., Gruel, G., Oestreicher, U., Barrios, L., & Barquinero, J. F. (2023). Biodose Tools: an R shiny application for biological dosimetry. International Journal of Radiation Biology, 99(9). https://doi.org/10.1080/09553002.2023.2176564
- A robust Bayesian analysis of variable selection under prior ignoranceBasu, T., Troffaes, M. C., & Einbeck, J. (2023). A robust Bayesian analysis of variable selection under prior ignorance. Sankhya A, 85(1), 1014-1057. https://doi.org/10.1007/s13171-022-00287-2
- Response transformations for random effect and variance component modelsAlmohaimeed, A., & Einbeck, J. (2022). Response transformations for random effect and variance component models. Statistical Modelling, 22(4), 297-326. https://doi.org/10.1177/1471082x20966919
- The effect of data aggregation on dispersion estimates in count data modelsErrington, A., Einbeck, J., Cumming, J., Rössler, U., & Endesfelder, D. (2022). The effect of data aggregation on dispersion estimates in count data models. International Journal of Biostatistics, 18(1), 183-202. https://doi.org/10.1515/ijb-2020-0079
- Multisite educational trials: estimating the effect size and its confidence intervalsSingh, A., Uwimpuhwe, G., Li, M., Einbeck, J., Higgins, S., & Kasim, A. (2022). Multisite educational trials: estimating the effect size and its confidence intervals. International Journal of Research & Method in Education, 45(1), 18-38. https://doi.org/10.1080/1743727x.2021.1882416
- The impact of a novel medication scanner on administration errors in the hospital setting: a before and after feasibility studyTolley, C. L., Watson, N. W., Heed, A., Einbeck, J., Medows, S., Wood, L., Campbell, L., & Slight, S. P. (2022). The impact of a novel medication scanner on administration errors in the hospital setting: a before and after feasibility study. BMC Medical Informatics and Decision Making, 22(1), Article 86. https://doi.org/10.1186/s12911-022-01828-3
- Using Random Effect Models to Produce Robust Estimates of Death Rates in COVID-19 DataAlmohaimeed, A., Einbeck, J., Qarmalah, N., & Alkhidhr, H. (2022). Using Random Effect Models to Produce Robust Estimates of Death Rates in COVID-19 Data. International Journal of Environmental Research and Public Health, 19(22). https://doi.org/10.3390/ijerph192214960
- Effects of maternal mental health on prenatal movement profiles in twins and singletonsReissland, N., Einbeck, J., Wood, R., & Lane, A. (2021). Effects of maternal mental health on prenatal movement profiles in twins and singletons. Acta Paediatrica, 110(9), 2553-2558. https://doi.org/10.1111/apa.15903
- The Impact of a Bedside Medication Scanning Device on Administration Errors in the Hospital Setting: A Prospective Observational StudyTolley, C., Watson, N., Heed, A., Einbeck, J., Medows, S., Wood, L., Campbell, L., & Slight, S. (2021). The Impact of a Bedside Medication Scanning Device on Administration Errors in the Hospital Setting: A Prospective Observational Study. International Journal of Pharmacy Practice, 29(Supplement_1), i9. https://doi.org/10.1093/ijpp/riab016.011
- A graphical tool for assessing the suitability of a count regression modelWilson, P., & Einbeck, J. (2021). A graphical tool for assessing the suitability of a count regression model. Austrian Journal of Statistics, 50(1), 1-23. https://doi.org/10.17713/ajs.v50i1.921
- Effects of maternal mental health on fetal visual preference for face-like compared to non-face like light stimulationReissland, N., Wood, R., Einbeck, J., & Lane, A. (2020). Effects of maternal mental health on fetal visual preference for face-like compared to non-face like light stimulation. Early Human Development, 151, Article 105227. https://doi.org/10.1016/j.earlhumdev.2020.105227
- Practical Considerations on Nonparametric Methods for Estimating Intrinsic Dimensions of Nonlinear Data StructuresEinbeck, J., Kalantan, Z., & Kruger, U. (2020). Practical Considerations on Nonparametric Methods for Estimating Intrinsic Dimensions of Nonlinear Data Structures. International Journal of Pattern Recognition and Artificial Intelligence, 34(9), Article 2058010. https://doi.org/10.1142/s0218001420580100
- Prenatal effects of maternal nutritional stress and mental health on the fetal movement profileReissland, N., Millard, A., Wood, R., Ustun, B., McFaul, C., Froggatt, S., & Einbeck, J. (2020). Prenatal effects of maternal nutritional stress and mental health on the fetal movement profile. Archives of Gynecology and Obstetrics, 302(1), 65-75. https://doi.org/10.1007/s00404-020-05571-w
- Testing fetal abilities: A commentary on studies testing prenatal reactions to light stimulationReissland, N., Wood, R., Einbeck, J., & Lane, A. (2020). Testing fetal abilities: A commentary on studies testing prenatal reactions to light stimulation. SSRN. https://doi.org/10.2139/ssrn.3569540
- Improving the accuracy of dose estimates from automatically scored dicentric chromosomes by accounting for chromosome numberEndesfelder, D., Kulka, U., Einbeck, J., & Oestreicher, U. (2020). Improving the accuracy of dose estimates from automatically scored dicentric chromosomes by accounting for chromosome number. International Journal of Radiation Biology, 96(12), 1571-1584. https://doi.org/10.1080/09553002.2020.1829152
- Quantile-Based Estimation of the Finite Cauchy Mixture ModelKalantan, Z. I., & Einbeck, J. (2019). Quantile-Based Estimation of the Finite Cauchy Mixture Model. Symmetry, 11(9), Article 1186. https://doi.org/10.3390/sym11091186
- A new and intuitive test for zero modificationWilson, P., & Einbeck, J. (2019). A new and intuitive test for zero modification. Statistical Modelling, 19(4), 341--361. https://doi.org/10.1177/1471082x18762277
- A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assayEinbeck, J., Ainsbury, E. A., Sales, R., Barnard, S., Kaestle, F., & Higueras, M. (2018). A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay. PLoS ONE, 13(11). https://doi.org/10.1371/journal.pone.0207464
- k-Boxplots for mixture dataQarmalah, N. M., Einbeck, J., & Coolen, F. P. (2018). k-Boxplots for mixture data. Statistical Papers, 59(2), 513-528. https://doi.org/10.1007/s00362-016-0774-7
- Fisher information under Gaussian quadrature modelsMarques da Silva Júnior, A. H., Einbeck, J., & Craig, P. S. (2018). Fisher information under Gaussian quadrature models. Statistica Neerlandica, 72(2), 74-89. https://doi.org/10.1111/stan.12116
- Self–consistency–based tests for bivariate distributionsEinbeck, J., & Meintanis, S. (2017). Self–consistency–based tests for bivariate distributions. Journal of Statistical Theory and Practice, 11(3), 478-492. https://doi.org/10.1080/15598608.2017.1318098
- Mixture Models for Prediction from Time Series, with Application to Energy Use DataQarmalah, N. M., Einbeck, J., & Coolen, F. P. (2017). Mixture Models for Prediction from Time Series, with Application to Energy Use Data. Archives of Data Science. Series A, 2(1), 1-15. https://doi.org/10.5445/ksp/1000058749/07
- Uncertainty of fast biological radiation dose assessment for emergency response scenariosAinsbury, E. A., Higueras, M., Puig, P., Einbeck, J., Samaga, D., Barquinero, J. F., Barrios, L., Brzozowska, B., Fattibene, P., Gregoire, E., Jaworska, A., Lloyd, D., Oestreicher, U., Romm, H., Rothkamm, K., Roy, L., Sommer, S., Terzoudi, G., Thierens, H., … Woda, C. (2017). Uncertainty of fast biological radiation dose assessment for emergency response scenarios. International Journal of Radiation Biology, 93(1), 127-135. https://doi.org/10.1080/09553002.2016.1227106
- The correlation threshold as a strategy for gene filtering, with application to irritable bowel syndrome and breast cancer microarray dataJackson, S. E., Einbeck, J., Kasim, A., & Talloen, W. (2016). The correlation threshold as a strategy for gene filtering, with application to irritable bowel syndrome and breast cancer microarray data. Reinvention: An International Journal of Undergraduate Research, 9(2).
- Zero-inflated regression models for radiation-induced chromosome aberration data: A comparative studyOliveira, M., Einbeck, J., Higueras, M., Ainsbury, E., Puig, P., & Rothkamm, K. (2016). Zero-inflated regression models for radiation-induced chromosome aberration data: A comparative study. Biometrical Journal, 58(2), 259-279. https://doi.org/10.1002/bimj.201400233
- A summer with genes: Simple disease classification from microarray dataEinbeck, J., Jackson, S. E., & Kasim, A. (2015). A summer with genes: Simple disease classification from microarray data. Mathematics Today, 51(4), 186-188.
- Some asymptotics for localized principal components and curvesEinbeck, J., & Zayed, M. (2014). Some asymptotics for localized principal components and curves. Communications in Statistics - Theory and Methods, 43(8), 1736-1749. https://doi.org/10.1080/03610926.2012.673676
- Implementation of a local principal curves algorithm for neutrino interaction reconstruction in a liquid argon volumeBack, J., Barker, G., Boyd, S., Einbeck, J., Haigh, M., Morgan, B., Oakley, B., Ramachers, Y., & Roythorne, D. (2014). Implementation of a local principal curves algorithm for neutrino interaction reconstruction in a liquid argon volume. European Physical Journal C: Particles and Fields, 74(3), Article 2832. https://doi.org/10.1140/epjc/s10052-014-2832-4
- Discussion of ‘Beyond mean regression’Einbeck, J. (2013). Discussion of ‘Beyond mean regression’. Statistical Modelling, 13(4), 349-354. https://doi.org/10.1177/1471082x13494526
- Validation tests for semi-parametric modelsMeintanis, S., & Einbeck, J. (2013). Validation tests for semi-parametric models. Journal of Statistical Computation and Simulation, 85(1), 131-146. https://doi.org/10.1080/00949655.2013.806922
- Challenging the curse of dimensionality in multivariate local linear regressionTaylor, J., & Einbeck, J. (2013). Challenging the curse of dimensionality in multivariate local linear regression. Computational Statistics, 28(3), 955-976. https://doi.org/10.1007/s00180-012-0342-0
- A number-of-modes reference rule for density estimation under multimodalityEinbeck, J., & Taylor, J. (2013). A number-of-modes reference rule for density estimation under multimodality. Statistica Neerlandica, 67(1), 54-66. https://doi.org/10.1111/j.1467-9574.2012.00531.x
- Goodness-of-fit tests in semi-linear modelsMeintanis, S., & Einbeck, J. (2012). Goodness-of-fit tests in semi-linear models. Statistics and Computing, 22(4), 967-979. https://doi.org/10.1007/s11222-011-9266-8
- Using principal curves to analyse traffic patterns on freewaysEinbeck, J., & Dwyer, J. (2011). Using principal curves to analyse traffic patterns on freeways. Transportmetrica, 7(3), 229-246. https://doi.org/10.1080/18128600903500110
- Bandwidth Selection for Mean-shift based Unsupervised Learning Techniques: a Unified Approach via Self-coverageEinbeck, J. (2011). Bandwidth Selection for Mean-shift based Unsupervised Learning Techniques: a Unified Approach via Self-coverage. Journal of Pattern Recognition Research., 6(2), 175-192. https://doi.org/10.13176/11.288
- Data compression and regression through local principal curves and surfacesEinbeck, J., Evers, L., & Powell, B. (2010). Data compression and regression through local principal curves and surfaces. International Journal of Neural Systems, 20(3), 177-192. https://doi.org/10.1142/s0129065710002346
- Weighted Repeated Median Smoothing and FilteringFried, R., Einbeck, J., & Gather, U. (2007). Weighted Repeated Median Smoothing and Filtering. Journal of the American Statistical Association, 102(480), 1300-1308. https://doi.org/10.1198/016214507000001166
- A new package for fitting random effect modelsEinbeck, J., Hinde, J., & Darnell, R. (2007). A new package for fitting random effect models. R News, 7(1), 26-30.
- On design-weighted local fitting and its relation to the Horvitz-Thompson estimatorEinbeck, J., & Augustin, T. (2007). On design-weighted local fitting and its relation to the Horvitz-Thompson estimator. Statistica Sinica, 19(1), 103-123.
- Software for calculating blood lactate endurance markersNewell, J., Higgins, D., Madden, N., Cruickshank, J., Einbeck, J., McMillan, K., & McDonald, R. (2007). Software for calculating blood lactate endurance markers. Journal of Sports Sciences, 25(12), 1403-1409. https://doi.org/10.1080/02640410601128922
- Modelling beyond regression functions: An application of multimodal regression to speed-flow dataEinbeck, J., & Tutz, G. (2006). Modelling beyond regression functions: An application of multimodal regression to speed-flow data. Journal of the Royal Statistical Society: Series C, 55(4), 461-475. https://doi.org/10.1111/j.1467-9876.2006.00547.x
- A note on NPML estimation for exponential family regression models with unspecified dispersion parameterEinbeck, J., & Hinde, J. (2006). A note on NPML estimation for exponential family regression models with unspecified dispersion parameter. Austrian Journal of Statistics, 35(2&3), 233-243.
- Local Principal CurvesEinbeck, J., Tutz, G., & Evers, L. (2005). Local Principal Curves. Statistics and Computing, 15(4), 301-313. https://doi.org/10.1007/s11222-005-4073-8
- Local fitting with a power basisEinbeck, J. (2004). Local fitting with a power basis. Revstat Statistical Journal, 2(2), 102-126.
- Local Smoothing with Robustness against outlying PredictorsEinbeck, J., Andre, C. D., & Singer, J. M. (2004). Local Smoothing with Robustness against outlying Predictors. Environmetrics, 15(6), 541-554. https://doi.org/10.1002/env.644
- A Simple Unifying Formula for Taylor's Theorem and Cauchy's Mean Value TheoremEinbeck, J. (2004). A Simple Unifying Formula for Taylor’s Theorem and Cauchy’s Mean Value Theorem. International Journal of Pure and Applied Mathematics : IJPAM., 14(1), 69-74.
- Online Monitoring with Local Smoothing Methods and Adaptive RidgingEinbeck, J., & Kauermann, G. (2003). Online Monitoring with Local Smoothing Methods and Adaptive Ridging. Journal of Statistical Computation and Simulation, 73(12), 913-929. https://doi.org/10.1080/0094965031000104332
- Multivariate Local Fitting with General Basis FunctionsEinbeck, J. (2003). Multivariate Local Fitting with General Basis Functions. Computational Statistics, 18(2), 185-203. https://doi.org/10.1007/s001800300140
Report
- The differential impact of Covid-19 related school closures on English primary school pupils’ writing performanceBeckmann, J., Einbeck, J., & Hunt, A. (2025). The differential impact of Covid-19 related school closures on English primary school pupils’ writing performance. Nuffield Foundation.
- Evaluating the impact of the Parents and Children Together (PACT) programme on the language skills of 3- to 4-year-old nursery children A two-armed randomised trialMenzies, V., Eerola, P.-S., Zhang, Q., Cramman, H., & Einbeck, J. (2024). Evaluating the impact of the Parents and Children Together (PACT) programme on the language skills of 3- to 4-year-old nursery children A two-armed randomised trial. Educational Endowment Foundation.
- Improving power calculations in educational trialsSingh, A., Uwimpuhwe, G., Vallis, D., Akhter, N., Coolen-Maturi, T., Einbeck, J., Higgins, S., Culliney, M., & Demack, S. (2023). Improving power calculations in educational trials. Education Endowment Foundation.
- Parents and Children Together (PACT) Evaluation ReportMenzies, V., Cramman, H., Eerola, P., Hugill-Jones, J., Akhter, N., & Einbeck, J. (2022). Parents and Children Together (PACT) Evaluation Report.
- Individual-participant-data-meta-analysis-of-the-impact-of-EEF-trials-on-the-educational-attainment-of-pupils-on-Free-School-MealsAshraf, B., Singh, A., Uwimpuhwe, G., Coolen-Maturi, T., Einbeck, J., Higgins, S., & Kasim, A. (2021). Individual-participant-data-meta-analysis-of-the-impact-of-EEF-trials-on-the-educational-attainment-of-pupils-on-Free-School-Meals. EEF.
Supervision students
Areej Alzahrani
1S
Deimante Baguckaite
Early Career Fellowship
Germaine Uwimpuhwe
1S
Shrog Albalawi
2S
Yilun Cai
Yuzheng Zhang
Research Postgraduate – Bioengineering Node