Skip to main content
Overview

Professor Jochen Einbeck

Professor


Affiliations
AffiliationTelephone
Professor in the Department of Mathematical Sciences
DRMC Co-Director (Health Data Science) in the Faculty of Social Sciences and Health
Co-Director (Biostatistics & Apprenticeships) in the Durham Research Methods Centre

Research interests

  • Mixture models
  • Nonparametric regression
  • Principal curves
  • Random effect modelling

Esteem Indicators

  • 2000: Associate Editor, Statistical Modelling:
  • 2000: Associate Editor, Advances in Statistical Analysis:
  • 2000: Member of the Executive Committee of the SMS: The Statistical Modelling Society (SMS) is an international society with the purpose of promoting and encouraging statistical modelling, and which organizes the annual conference "International Workshop on Statistical Modelling". I have been elected member of the SMS Executive Committee 2011-12 and 2015-18, and continue to be member on the Committee as the Representative of the WG for Communication

Publications

Chapter in book

  • A Distance-Based Statistic for Goodness-of-Fit Assessment
    Jayakumari, D., Einbeck, J., Hinde, J., & Moral, R. A. (2024). A Distance-Based Statistic for Goodness-of-Fit Assessment. In J. Einbeck, H. Maeng, E. Ogundimu, & K. Perrakis (Eds.), Developments in Statistical Modelling (pp. 263-268). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-65723-8_40
  • Estimating Dose and Time of Exposure from a Protein-Based Radiation Biomarker
    Cai, Y., Einbeck, J., Barnard, S., & Ainsbury, E. (2024). Estimating Dose and Time of Exposure from a Protein-Based Radiation Biomarker. In Developments in Statistical Modelling (pp. 239-245). Springer. https://doi.org/10.1007/978-3-031-65723-8_37
  • Tools for Assessing Goodness of Fit of GLMs: Case Studies in Entomology
    Jayakumari, D., Hinde, J., Einbeck, J., & Moral, R. A. (2024). Tools for Assessing Goodness of Fit of GLMs: Case Studies in Entomology. In Modelling Insect Populations in Agricultural Landscapes (pp. 211-235). Springer International Publishing. https://doi.org/10.1007/978-3-031-43098-5_11
  • Elicitation of Priors for Intervention Effects in Educational Trial Data
    Zhang, Q., Uwimpuhwe, G., Vallis, D., Singh, A., Coolen-Maturi, T., & Einbeck, J. (2024). Elicitation of Priors for Intervention Effects in Educational Trial Data. In J. Einbeck, H. Maeng, E. Ogundimu, & K. Perrakis (Eds.), Developments in Statistical Modelling (pp. 28-33). Springer. https://doi.org/10.1007/978-3-031-65723-8_5
  • Uncertainty Quantification in Lasso-Type Regularization Problems
    Basu, T., Einbeck, J., & Troffaes, M. C. (2021). Uncertainty Quantification in Lasso-Type Regularization Problems. In Optimization Under Uncertainty with Applications to Aerospace Engineering (pp. 81-109). Springer Verlag. https://doi.org/10.1007/978-3-030-60166-9_3
  • Estimating Exposure Fraction from Radiation Biomarkers: A Comparison of Frequentist and Bayesian Approaches
    Errington, A., Einbeck, J., & Cumming, J. (2021). Estimating Exposure Fraction from Radiation Biomarkers: A Comparison of Frequentist and Bayesian Approaches. In M. Vasile & D. Quagliarella (Eds.), Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications (pp. 393-405). Springer Verlag. https://doi.org/10.1007/978-3-030-80542-5_24
  • On the Use of Random Effect Models for Radiation Biodosimetry
    Einbeck, J., Ainsbury, E., Barnard, S., Oliveira, M., Manning, G., Puig, P., & Badie, C. (2017). On the Use of Random Effect Models for Radiation Biodosimetry. In E. Ainsbury, M. Calle, E. Cardis, J. Einbeck, G. Gómez, & P. Puig (Eds.), Extended abstracts Fall 2015 : Biomedical Big Data ; Statistics for Low Dose Radiation Research. (pp. 89-94). Springer Verlag. https://doi.org/10.1007/978-3-319-55639-0_15
  • Hotspots in Hindsight
    Julian, B. R., Foulger, G. R., Hatfield, O., Jackson, S. E., Simpson, E., Einbeck, J., & Moore, A. (2015). Hotspots in Hindsight. In The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson (pp. 105-121). The Geological Society of America / AGU. https://doi.org/10.1130/2015.2514%2808%29
  • Representing complex data using localized principal components with application to astronomical data.
    Einbeck, J., Evers, L., & Bailer-Jones, C. (2008). Representing complex data using localized principal components with application to astronomical data. In A. Gorban, B. Kegl, D. Wunsch, & A. Zinovyev (Eds.), Lecture Notes in Computational Science and Engineering. (pp. 180-204). Springer-Verlag. https://doi.org/10.1007/978-3-540-73750-6_7

Conference Paper

Conference Proceeding

Doctoral Thesis

Edited book

Journal Article

Report

Supervision students