Staff profile
Overview
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Mathematical Sciences |
Research interests
- Partial Differential Equations
- Spectral Geometry
Publications
Journal Article
- Gittins, K., Gordon, C., Khalile, M., Membrillo Solis, I., Sandoval, M., & Stanhope, E. (online). Do the Hodge spectra distinguish orbifolds from manifolds? Part 1. Michigan Mathematical Journal, 74(3), 571-598. https://doi.org/10.1307/mmj/20216126
- Gittins, K., Gordon, C., Membrillo Solis, I., Pablo Rossetti, J., Sandoval, M., & Stanhope, E. (in press). Do the Hodge spectra distinguish orbifolds from manifolds? Part 2. Michigan Mathematical Journal,
- Brisson, J., Colbois, B., & Gittins, K. (in press). Spectral ratios and gaps for Steklov eigenvalues of balls with revolution-type metrics. Canadian Mathematical Bulletin,
- Farrington, S., & Gittins, K. (2023). Heat Flow in Polygons with Reflecting Edges. Integral Equations and Operator Theory, 95(4), Article 27. https://doi.org/10.1007/s00020-023-02749-0
- Egidi, M., Gittins, K., Habib, G., & Peyerimhoff, N. (2023). Eigenvalue estimates for the magnetic Hodge Laplacian on differential forms. Journal of Spectral Theory, 13(4), 1297-1343. https://doi.org/10.4171/JST/480
- Colbois, B., & Gittins, K. (2021). Upper bounds for Steklov eigenvalues of submanifolds in Euclidean space via the intersection index. Differential Geometry and its Applications, 78, Article 101777. https://doi.org/10.1016/j.difgeo.2021.101777
- Gittins, K., & Helffer, B. (2021). Courant-sharp Robin eigenvalues for the square: The case of negative Robin parameter. Asymptotic Analysis, 124(1-2), 69-107. https://doi.org/10.3233/asy-201642
- Gittins, K., & Léna, C. (2020). Upper bounds for Courant-sharp Neumann and Robin eigenvalues. https://doi.org/10.24033/bsmf.2800
- van den Berg, M., Gilkey, P., & Gittins, K. (2020). Heat Flow from Polygons. Potential Analysis, 53(3), 1043-1062. https://doi.org/10.1007/s11118-019-09797-5
- Gittins, K., & Helffer, B. (2020). Courant-sharp Robin eigenvalues for the square: the case with small Robin parameter. Annales mathématiques du Québec, 44(1), 91-123. https://doi.org/10.1007/s40316-019-00120-7
- Gittins, K., & Helffer, B. (2019). Courant-sharp Robin eigenvalues for the square and other planar domains. Portugaliae Mathematica, 76(1), 57-100. https://doi.org/10.4171/pm/2027
- Colbois, B., Girouard, A., & Gittins, K. (2019). Steklov Eigenvalues of Submanifolds with Prescribed Boundary in Euclidean Space. Journal of Geometric Analysis, 29(2), 1811-1834. https://doi.org/10.1007/s12220-018-0063-x
- Gittins, K., & Larson, S. (2017). Asymptotic Behaviour of Cuboids Optimising Laplacian Eigenvalues. Integral Equations and Operator Theory, 89(4), 607-629. https://doi.org/10.1007/s00020-017-2407-5
- van den Berg, M., & Gittins, K. (2017). MINIMIZING DIRICHLET EIGENVALUES on CUBOIDS of UNIT MEASURE. Mathematika, 63(2), 469-482. https://doi.org/10.1112/s0025579316000413
- van den Berg, M., & Gittins, K. (2016). On the Heat Content of a Polygon. Journal of Geometric Analysis, 26(3), 2231-2264. https://doi.org/10.1007/s12220-015-9626-2
- van den Berg, M., & Gittins, K. (2016). On the number of Courant-sharp Dirichlet eigenvalues. Journal of Spectral Theory, 6(4), 735-745. https://doi.org/10.4171/jst/139
- van den Berg, M., Bucur, D., & Gittins, K. (2016). Maximising Neumann eigenvalues on rectangles. Bulletin of the London Mathematical Society, 48(5), 877-894. https://doi.org/10.1112/blms/bdw049
- van den Berg, M., & Gittins, K. (2015). Uniform bounds for the heat content of open sets in Euclidean space. https://doi.org/10.1016/j.difgeo.2015.01.010
- Gittins, K., Peyerimhoff, N., Stoiciu, M., & Wirosoetisno, D. (2012). Some spectral applications of McMullen's Hausdorff dimension algorithm. Conformal Geometry and Dynamics, 16, 184-203. https://doi.org/10.1090/s1088-4173-2012-00244-5
Supervision students
Sam Farrington
3CAM