Skip to main content

Dr Megan Baker

Assistant Professor (Research)

AffiliationRoom numberTelephone
Assistant Professor (Research) in the Department of Geography401 
Post Doctoral Research Associate , Hazards and Surface Change  



2019 – present: Postdoctoral Research Associate, Durham University

2015 - 2019: PhD - Bangor University

Thesis:“The Role of Clay Minerals on Sediment Gravity Flow Dynamics and Deposits”

2014 - 2015: MSc - Applied Marine Geoscience, Bangor University

2011 - 2014: BSc (Hons) – Ocean Science, Bangor University

Research Overview

My research focuses on understanding sediment gravity flow dynamics and deposits. I am particularly interested in what controls sediment gravity flow behaviour (such as sediment type and concentration), how these flows evolve in space and time, and how the flow behaviour is recorded in the deposits.

I currently work as a postdoctoral research associate on the NERC-funded project How do deep-ocean turbidity currents behave that form the largest sediment accumulations on Earth?. This projects aims to make the first detailed measurements of sediment gravity flows (also called turbidity currents) in the deep ocean by studying the Congo Canyon off West Africa, which acts as a funnel for sediment gravity flows. The project uses downward-pointing acoustic Doppler current profilers (ADCPs) that are suspended above the flows to measure velocity, turbulence and sediment concentration structures. I will look at the data collected by the ADCPs and also investigate sediment cores collected from the Congo Canyon.

My PhD researched clay-laden cohesive sediment gravity flows through a combination of fieldwork and laboratory flume experiments. Cohesive sediment gravity flows are complex because of the unique ability of suspended clay minerals to form flocs and gels, which can increase the viscosity of sediment gravity flows and change the fluid dynamics. Using laboratory experiments I determined that the effect of clay mineral type on the flow behaviour and deposit properties of clay-rich sediment gravity flows is significant and can be predicted using the rheological properties of the starting suspensions. Another part of my PhD was based on geological fieldwork from which I identified a variety of novel mixed sand-mud bedforms in the distal part of the submarine fan that makes up the Aberystwyth Grits Group and Borth Mudstone Formation in mid-Wales. I interpreted that these bedforms were deposited by sediment gravity flows where cohesive clay modified the fluid dynamics.

Research groups

Esteem Indicators

  • 2018: Drapers’ Company Medal : For an outstanding postgraduate contribution to Bangor University.
  • 2018: Richard W. Faas Research Prize : Awarded by the International Association of Sedimentologists to recognise outstanding work in the field of fine-grained marine sedimentology.
  • 2017: Best Oral Presentation at the International Conference on Cohesive Sediment Transport Processes :
  • 2016: British Sedimentological Research Group (BSRG) Award for Masters Sedimentology Thesis :


Journal Article