Staff profile
Overview
https://apps.dur.ac.uk/biography/image/2
Professor Michael Spannowsky
Director of Institute of Particle Physics Phenomenology
Affiliation | Telephone |
---|---|
Director of Institute of Particle Physics Phenomenology in the Department of Physics | +44 (0) 191 33 43636 |
Professor in the Department of Physics | +44 (0) 191 33 43636 |
Director in the Institute for Particle Physics Phenomenology |
Publications
Conference Paper
- The Higgs Portal and Cosmology
Assamagan, K., Spannowsky, M., & others. (2016, December). The Higgs Portal and Cosmology
Journal Article
- Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies
Contino, R., & Spannowsky, M. (online). Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies - Precision measurements for the Higgsploding Standard Model
Khoze, V. V., Reiness, J., Spannowsky, M., & Waite, P. (online). Precision measurements for the Higgsploding Standard Model - Physics at a 100 TeV pp collider: beyond the Standard Model phenomena
Golling, T., Spannowsky, M., & Khoze, V. (online). Physics at a 100 TeV pp collider: beyond the Standard Model phenomena - Generating quantum reservoir state representations with random matrices
Tovey, S., Fellner, T., Holm, C., & Spannowsky, M. (2025). Generating quantum reservoir state representations with random matrices. Machine Learning: Science and Technology, 6(1), Article 015068. https://doi.org/10.1088/2632-2153/adc0e2 - Optimal equivariant architectures from the symmetries of matrix-element likelihoods
Maître, D., Ngairangbam, V. S., & Spannowsky, M. (2025). Optimal equivariant architectures from the symmetries of matrix-element likelihoods. Machine Learning: Science and Technology, 6(1), Article 015059. https://doi.org/10.1088/2632-2153/adbab1 - Impact of new physics on momentum-dependent particle widths and propagators
Englert, C., Naskar, W., & Spannowsky, M. (2025). Impact of new physics on momentum-dependent particle widths and propagators. Physical Review D, 111(5), Article 055017. https://doi.org/10.1103/PhysRevD.111.055017 - Probing right-handed neutrinos via trilepton signals at the HL-LHC
Mitra, M., Saha, S., Spannowsky, M., & Takeuchi, M. (2025). Probing right-handed neutrinos via trilepton signals at the HL-LHC. Physical Review D, 111(1), Article 015005. https://doi.org/10.1103/PhysRevD.111.015005 - Electroweak corrections and EFT operators in W+W− production at the LHC
Banerjee, S., Reichelt, D., & Spannowsky, M. (2024). Electroweak corrections and EFT operators in W+W− production at the LHC. Physical Review D, 110(11), https://doi.org/10.1103/physrevd.110.115012 - Simulating Z 2 lattice gauge theory with the variational quantum thermalizer
Fromm, M., Philipsen, O., Spannowsky, M., & Winterowd, C. (2024). Simulating Z 2 lattice gauge theory with the variational quantum thermalizer. EPJ Quantum Technology, 11(1), 20. https://doi.org/10.1140/epjqt/s40507-024-00232-2 - Enhancing quantum field theory simulations on NISQ devices with Hamiltonian truncation
Ingoldby, J., Spannowsky, M., Sypchenko, T., & Williams, S. (2024). Enhancing quantum field theory simulations on NISQ devices with Hamiltonian truncation. Physical Review D, 110(9), Article 096016. https://doi.org/10.1103/physrevd.110.096016 - Dispelling the L myth for the High-Luminosity LHC
Belvedere, A., Englert, C., Kogler, R., & Spannowsky, M. (2024). Dispelling the L myth for the High-Luminosity LHC. The European Physical Journal C, 84(7), Article 715. https://doi.org/10.1140/epjc/s10052-024-13032-w - Equivariant, safe and sensitive — graph networks for new physics
Bhardwaj, A., Englert, C., Naskar, W., Ngairangbam, V. S., & Spannowsky, M. (2024). Equivariant, safe and sensitive — graph networks for new physics. Journal of High Energy Physics, 2024(7), Article 245. https://doi.org/10.1007/jhep07%282024%29245 - Simulating quantum field theories on continuous-variable quantum computers
Abel, S., Spannowsky, M., & Williams, S. (2024). Simulating quantum field theories on continuous-variable quantum computers. Physical Review A, 110(1), Article 012607. https://doi.org/10.1103/physreva.110.012607 - Training neural networks with universal adiabatic quantum computing
Abel, S., Criado, J. C., & Spannowsky, M. (2024). Training neural networks with universal adiabatic quantum computing. Frontiers in Artificial Intelligence, 7, Article 1368569. https://doi.org/10.3389/frai.2024.1368569 - Exploring thermal equilibria of the Fermi-Hubbard model with variational quantum algorithms
Araz, J. Y., Spannowsky, M., & Wingate, M. (2024). Exploring thermal equilibria of the Fermi-Hubbard model with variational quantum algorithms. Physical Review A, 109(6), Article 062422. https://doi.org/10.1103/physreva.109.062422 - Charting the free energy landscape of metastable topological magnetic objects
Criado, J. C., Hatton, P. D., Lanza, Á., Schenk, S., & Spannowsky, M. (2024). Charting the free energy landscape of metastable topological magnetic objects. Physical Review B, 109(19), Article 195114. https://doi.org/10.1103/physrevb.109.195114 - Quantum pathways for charged track finding in high-energy collisions
Brown, C., Spannowsky, M., Tapper, A., Williams, S., & Xiotidis, I. (2024). Quantum pathways for charged track finding in high-energy collisions. Frontiers in Artificial Intelligence, 7, Article 1339785. https://doi.org/10.3389/frai.2024.1339785 - Higgs boson off-shell measurements probe nonlinearities
Anisha, Englert, C., Kogler, R., & Spannowsky, M. (2024). Higgs boson off-shell measurements probe nonlinearities. Physical Review D, 109(9), Article 095033. https://doi.org/10.1103/physrevd.109.095033 - Interpretable deep learning models for the inference and classification of LHC data
Ngairangbam, V. S., & Spannowsky, M. (2024). Interpretable deep learning models for the inference and classification of LHC data. Journal of High Energy Physics, 2024(5), Article 4. https://doi.org/10.1007/jhep05%282024%29004 - Three-Body Entanglement in Particle Decays.
Sakurai, K., & Spannowsky, M. (2024). Three-Body Entanglement in Particle Decays. Physical Review Letters, 132(15), Article 151602. https://doi.org/10.1103/PhysRevLett.132.151602 - EFT, decoupling, Higgs boson mixing, and higher dimensional operators
Banerjee, U., Chakrabortty, J., Englert, C., Naskar, W., Rahaman, S. U., & Spannowsky, M. (2024). EFT, decoupling, Higgs boson mixing, and higher dimensional operators. Physical Review D, 109(5), Article 055035. https://doi.org/10.1103/physrevd.109.055035 - Prospects for exotic h→4τ decays in single and di-Higgs boson production at the LHC and future hadron colliders
Adhikary, A., Banerjee, S., Barman, R. K., Batell, B., Bhattacherjee, B., Bose, C., Qian, Z., & Spannowsky, M. (2024). Prospects for exotic h→4τ decays in single and di-Higgs boson production at the LHC and future hadron colliders. Physical Review D, 109(5), Article 055008. https://doi.org/10.1103/physrevd.109.055008 - FeynMG: A FeynRules extension for scalar-tensor theories of gravity
Sevillano Muñoz, S., Copeland, E. J., Millington, P., & Spannowsky, M. (2024). FeynMG: A FeynRules extension for scalar-tensor theories of gravity. Computer Physics Communications, 296, Article 109035. https://doi.org/10.1016/j.cpc.2023.109035 - Generative invertible quantum neural networks
Rousselot, A., & Spannowsky, M. (2024). Generative invertible quantum neural networks. SciPost Physics, 16(6), Article 146. https://doi.org/10.21468/scipostphys.16.6.146 - Hypergraphs in LHC phenomenology — the next frontier of IRC-safe feature extraction
Konar, P., Ngairangbam, V. S., & Spannowsky, M. (2024). Hypergraphs in LHC phenomenology — the next frontier of IRC-safe feature extraction. Journal of High Energy Physics, 2024(1), Article 113. https://doi.org/10.1007/jhep01%282024%29113 - Quantum-probabilistic Hamiltonian learning for generative modeling and anomaly detection
Araz, J. Y., & Spannowsky, M. (2023). Quantum-probabilistic Hamiltonian learning for generative modeling and anomaly detection. Physical Review A, 108(6), Article 062422. https://doi.org/10.1103/physreva.108.062422 - Deuterium spectroscopy for enhanced bounds on physics beyond the standard model
Potvliege, R. M., Nicolson, A., Jones, M. P. A., & Spannowsky, M. (2023). Deuterium spectroscopy for enhanced bounds on physics beyond the standard model. Physical Review A, 108(5), Article 052825. https://doi.org/10.1103/physreva.108.052825 - Probing Poincaré violation
Gupta, R., Jaeckel, J., & Spannowsky, M. (2023). Probing Poincaré violation. Journal of High Energy Physics, 2023(11), 26. https://doi.org/10.1007/jhep11%282023%29026 - Hunting for neutral leptons with ultrahigh-energy neutrinos
Heighton, R., Heurtier, L., & Spannowsky, M. (2023). Hunting for neutral leptons with ultrahigh-energy neutrinos. Physical Review D, 108(5), Article 055009. https://doi.org/10.1103/physrevd.108.055009 - Toward a quantum simulation of nonlinear sigma models with a topological term
Araz, J. Y., Schenk, S., & Spannowsky, M. (2023). Toward a quantum simulation of nonlinear sigma models with a topological term. Physical Review A, 107(3), https://doi.org/10.1103/physreva.107.032619 - Integrating out heavy scalars with modified equations of motion: Matching computation of dimension-eight SMEFT coefficients
Banerjee, U., Chakrabortty, J., Englert, C., Rahaman, S. U., & Spannowsky, M. (2023). Integrating out heavy scalars with modified equations of motion: Matching computation of dimension-eight SMEFT coefficients. Physical Review D, 107(5), Article 055007. https://doi.org/10.1103/physrevd.107.055007 - Qade: solving differential equations on quantum annealers
Criado, J. C., & Spannowsky, M. (2023). Qade: solving differential equations on quantum annealers. Quantum Science and Technology, 8(1), Article 015021. https://doi.org/10.1088/2058-9565/acaa51 - Effective limits on single scalar extensions in the light of recent LHC data
Anisha, Das Bakshi, S., Banerjee, S., Biekötter, A., Chakrabortty, J., Patra, S. K., & Spannowsky, M. (2023). Effective limits on single scalar extensions in the light of recent LHC data. Physical Review D, 107(5), Article 055028. https://doi.org/10.1103/physrevd.107.055028 - Completely quantum neural networks
Abel, S., Criado, J. C., & Spannowsky, M. (2022). Completely quantum neural networks. Physical Review A, 106(2), Article 022601. https://doi.org/10.1103/physreva.106.022601 - Secluded dark matter in gauged B − L model
Bandyopadhyay, P., Mitra, M., Padhan, R., Roy, A., & Spannowsky, M. (2022). Secluded dark matter in gauged B − L model. Journal of High Energy Physics, 2022(5), Article 182. https://doi.org/10.1007/jhep05%282022%29182 - Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithm
Konar, P., Ngairangbam, V. S., & Spannowsky, M. (2022). Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithm. Journal of High Energy Physics, 2022(2), Article 60. https://doi.org/10.1007/jhep02%282022%29060 - Quantum optimization of complex systems with a quantum annealer
Abel, S., Blance, A., & Spannowsky, M. (2022). Quantum optimization of complex systems with a quantum annealer. Physical Review A, 106(4), https://doi.org/10.1103/physreva.106.042607 - Anomaly detection in high-energy physics using a quantum autoencoder
Ngairangbam, V. S., Spannowsky, M., & Takeuchi, M. (2022). Anomaly detection in high-energy physics using a quantum autoencoder. Physical Review D, 105(9), Article 095004. https://doi.org/10.1103/physrevd.105.095004 - Simulating anti-skyrmions on a lattice
Criado, J. C., Schenk, S., Spannowsky, M., Hatton, P. D., & Turnbull, L. (2022). Simulating anti-skyrmions on a lattice. Scientific Reports, 12, Article 19179. https://doi.org/10.1038/s41598-022-22043-0 - Landscaping CP-violating BSM scenarios
Das Bakshi, S., Chakrabortty, J., Englert, C., Spannowsky, M., & Stylianou, P. (2022). Landscaping CP-violating BSM scenarios. Nuclear Physics B, 975, https://doi.org/10.1016/j.nuclphysb.2022.115676 - IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
Atkinson, O., Bhardwaj, A., Englert, C., Konar, P., Ngairangbam, V. S., & Spannowsky, M. (2022). IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection. Frontiers in Artificial Intelligence, 5, Article 943135. https://doi.org/10.3389/frai.2022.943135 - Collider events on a quantum computer
Gustafson, G., Prestel, S., Spannowsky, M., & Williams, S. (2022). Collider events on a quantum computer. Journal of High Energy Physics, 2022(11), Article 35. https://doi.org/10.1007/jhep11%282022%29035 - Quantum walk approach to simulating parton showers
Bepari, K., Malik, S., Spannowsky, M., & Williams, S. (2022). Quantum walk approach to simulating parton showers. Physical Review D, 106(5), https://doi.org/10.1103/physrevd.106.056002 - A duality connecting neural network and cosmological dynamics
Krippendorf, S., & Spannowsky, M. (2022). A duality connecting neural network and cosmological dynamics. Machine Learning: Science and Technology, 3(3), https://doi.org/10.1088/2632-2153/ac87e9 - Effective connections of aμ , Higgs physics, and the collider frontier
Anisha, Banerjee, U., Chakrabortty, J., Englert, C., Spannowsky, M., & Stylianou, P. (2022). Effective connections of aμ , Higgs physics, and the collider frontier. Physical Review D, 105(1), https://doi.org/10.1103/physrevd.105.016019 - Coloring mixed QCD/QED evolution
Gellersen, L., Prestel, S., & Spannowsky, M. (2022). Coloring mixed QCD/QED evolution. SciPost Physics, 13(2), https://doi.org/10.21468/scipostphys.13.2.034 - Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models
Alvarez, E., Spannowsky, M., & Szewc, M. (2022). Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models. Frontiers in Artificial Intelligence, 5, Article 852970. https://doi.org/10.3389/frai.2022.852970 - Electroweak skyrmions in the HEFT
Criado, J. C., Khoze, V. V., & Spannowsky, M. (2021). Electroweak skyrmions in the HEFT. Journal of High Energy Physics, 2021(12), Article 26. https://doi.org/10.1007/jhep12%282021%29026 - Small instantons and the strong CP problem in composite Higgs models
Gupta, R., Khoze, V., & Spannowsky, M. (2021). Small instantons and the strong CP problem in composite Higgs models. Physical Review D, 104(7), Article 075011. https://doi.org/10.1103/physrevd.104.075011 - EFT diagrammatica: UV roots of the CP-conserving SMEFT
Bakshi, S. D., Chakrabortty, J., Prakash, S., Rahaman, S. U., & Spannowsky, M. (2021). EFT diagrammatica: UV roots of the CP-conserving SMEFT. Journal of High Energy Physics, 2021(6), Article 33. https://doi.org/10.1007/jhep06%282021%29033 - Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum
Abel, S., & Spannowsky, M. (2021). Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum, 2(1), Article 010349. https://doi.org/10.1103/prxquantum.2.010349 - Exploring instantons in nonlinear sigma models with spin-lattice systems
Schenk, S., & Spannowsky, M. (2021). Exploring instantons in nonlinear sigma models with spin-lattice systems. Physical Review B, 103(14), Article 144436. https://doi.org/10.1103/physrevb.103.144436 - Precision SMEFT bounds from the VBF Higgs at high transverse momentum
Araz, J. Y., Banerjee, S., Gupta, R. S., & Spannowsky, M. (2021). Precision SMEFT bounds from the VBF Higgs at high transverse momentum. Journal of High Energy Physics, 2021(4), Article 125. https://doi.org/10.1007/jhep04%282021%29125 - CP violation at ATLAS in effective field theory
Das Bakshi, S., Chakrabortty, J., Englert, C., Spannowsky, M., & Stylianou, P. (2021). CP violation at ATLAS in effective field theory. Physical Review D, 103(5), Article 055008. https://doi.org/10.1103/physrevd.103.055008 - Cosmological bubble friction in local equilibrium
Balaji, S., Spannowsky, M., & Tamarit, C. (2021). Cosmological bubble friction in local equilibrium. Journal of Cosmology and Astroparticle Physics, 2021(03), Article 051. https://doi.org/10.1088/1475-7516/2021/03/051 - The emergence of electroweak Skyrmions through Higgs bosons
Criado, J. C., Khoze, V. V., & Spannowsky, M. (2021). The emergence of electroweak Skyrmions through Higgs bosons. Journal of High Energy Physics, 2021(3), Article 162. https://doi.org/10.1007/jhep03%282021%29162 - Spectral walls in multifield kink dynamics
Adam, C., Oles, K., Romanczukiewicz, T., Wereszczynski, A., & Zakrzewski, W. (2021). Spectral walls in multifield kink dynamics. Journal of High Energy Physics, 2021(8), https://doi.org/10.1007/jhep08%282021%29147 - Classifying standard model extensions effectively with precision observables
Das Bakshi, S., Chakrabortty, J., & Spannowsky, M. (2021). Classifying standard model extensions effectively with precision observables. Physical Review D, 103(5), Article 056019. https://doi.org/10.1103/physrevd.103.056019 - Effective operator bases for beyond Standard Model scenarios: an EFT compendium for discoveries
Banerjee, U., Chakrabortty, J., Prakash, S., Rahaman, S. U., & Spannowsky, M. (2021). Effective operator bases for beyond Standard Model scenarios: an EFT compendium for discoveries. Journal of High Energy Physics, 2021(1), Article 28. https://doi.org/10.1007/jhep01%282021%29028 - Combine and conquer: event reconstruction with Bayesian Ensemble Neural Networks
Araz, J. Y., & Spannowsky, M. (2021). Combine and conquer: event reconstruction with Bayesian Ensemble Neural Networks. Journal of High Energy Physics, 2021(4), Article 296. https://doi.org/10.1007/jhep04%282021%29296 - Anomaly detection with convolutional Graph Neural Networks
Atkinson, O., Bhardwaj, A., Englert, C., Ngairangbam, V. S., & Spannowsky, M. (2021). Anomaly detection with convolutional Graph Neural Networks. Journal of High Energy Physics, 2021(8), https://doi.org/10.1007/jhep08%282021%29080 - Quantum computing for quantum tunneling
Abel, S., Chancellor, N., & Spannowsky, M. (2021). Quantum computing for quantum tunneling. Physical Review D, 103(1), Article 016008. https://doi.org/10.1103/physrevd.103.016008 - Quantum machine learning for particle physics using a variational quantum classifier
Blance, A., & Spannowsky, M. (2021). Quantum machine learning for particle physics using a variational quantum classifier. Journal of High Energy Physics, 2021, Article 212. https://doi.org/10.1007/jhep02%282021%29212 - Searching for QCD instantons at hadron colliders
Khoze, V. V., Milne, D. L., & Spannowsky, M. (2021). Searching for QCD instantons at hadron colliders. Physical Review D, 103(1), Article 014017. https://doi.org/10.1103/physrevd.103.014017 - Extended Higgs boson sectors, effective field theory, and Higgs boson phenomenology
Anisha, Banerjee, U., Chakrabortty, J., Englert, C., & Spannowsky, M. (2021). Extended Higgs boson sectors, effective field theory, and Higgs boson phenomenology. Physical Review D, 103(9), https://doi.org/10.1103/physrevd.103.096009 - Towards a quantum computing algorithm for helicity amplitudes and parton showers
Bepari, K., Malik, S., Spannowsky, M., & Williams, S. (2021). Towards a quantum computing algorithm for helicity amplitudes and parton showers. Physical Review D, 103(7), Article 076020. https://doi.org/10.1103/physrevd.103.076020 - Higgs self-coupling measurements using deep learning in the bb¯¯bb¯¯ final state
Amacker, J., Balunas, W., Beresford, L., Bortoletto, D., Frost, J., Issever, C., Liu, J., McKee, J., Micheli, A., Saenz, S. P., Spannowsky, M., & Stanislaus, B. (2020). Higgs self-coupling measurements using deep learning in the bb¯¯bb¯¯ final state. Journal of High Energy Physics, 2020(12), Article 115. https://doi.org/10.1007/jhep12%282020%29115 - Di-Higgs resonance searches in weak boson fusion
Barman, R. K., Englert, C., Gonçalves, D., & Spannowsky, M. (2020). Di-Higgs resonance searches in weak boson fusion. Physical Review D, 102(5), Article 055014. https://doi.org/10.1103/physrevd.102.055014 - The effective field theory of low scale see-saw at colliders
Biekötter, A., Chala, M., & Spannowsky, M. (2020). The effective field theory of low scale see-saw at colliders. The European Physical Journal C, 80(8), Article 743. https://doi.org/10.1140/epjc/s10052-020-8339-2 - Power meets Precision to explore the Symmetric Higgs Portal
Englert, C., Jaeckel, J., Spannowsky, M., & Stylianou, P. (2020). Power meets Precision to explore the Symmetric Higgs Portal. Physics Letters B, 806, Article 135526. https://doi.org/10.1016/j.physletb.2020.135526 - Mapping the shape of the scalar potential with gravitational waves
Chala, M., Khoze, V. V., Spannowsky, M., & Waite, P. (2019). Mapping the shape of the scalar potential with gravitational waves. International Journal of Modern Physics A, 34(33), Article 1950223 - Novel B-decay signatures of light scalars at high energy facilities
Blance, A., Chala, M., Ramos, M., & Spannowsky, M. (2019). Novel B-decay signatures of light scalars at high energy facilities. Physical Review D, 100(11), Article 115015. https://doi.org/10.1103/physrevd.100.115015 - Resolving the tensor structure of the Higgs coupling to Z bosons via Higgs-strahlung
Banerjee, S., Gupta, R. S., Reiness, J. Y., & Spannowsky, M. (2019). Resolving the tensor structure of the Higgs coupling to Z bosons via Higgs-strahlung. Physical Review D, 100(11), Article 115004. https://doi.org/10.1103/physrevd.100.115004 - Higgs phenomenology as a probe of sterile neutrinos
Butterworth, J. M., Chala, M., Englert, C., Spannowsky, M., & Titov, A. (2019). Higgs phenomenology as a probe of sterile neutrinos. Physical Review D, 100(11), Article 115019. https://doi.org/10.1103/physrevd.100.115019 - All-in-one relaxion: A unified solution to five particle-physics puzzles
Gupta, R., Reiness, J., & Spannowsky, M. (2019). All-in-one relaxion: A unified solution to five particle-physics puzzles. Physical Review D, 100(5), Article 055003. https://doi.org/10.1103/physrevd.100.055003 - HYTREES: combining matrix elements and parton shower for hypothesis testing
Prestel, S., & Spannowsky, M. (2019). HYTREES: combining matrix elements and parton shower for hypothesis testing. The European Physical Journal C, 79(7), Article 546. https://doi.org/10.1140/epjc/s10052-019-7030-y - Approaching robust EFT limits for CP violation in the Higgs sector
Englert, C., Galler, P., Pilkington, A., & Spannowsky, M. (2019). Approaching robust EFT limits for CP violation in the Higgs sector. Physical Review D, 99(9), Article 095007. https://doi.org/10.1103/physrevd.99.095007 - Constraining four-fermion operators using rare top decays
Chala, M., Santiago, J., & Spannowsky, M. (2019). Constraining four-fermion operators using rare top decays. Journal of High Energy Physics, 2019(4), Article 14. https://doi.org/10.1007/jhep04%282019%29014 - Consistency of Higgsplosion in localizable QFT
Khoze, V. V., & Spannowsky, M. (2019). Consistency of Higgsplosion in localizable QFT. Physics Letters B, 790, 466-474. https://doi.org/10.1016/j.physletb.2019.01.052 - Gravitational wave and collider probes of a triplet Higgs sector with a low cutoff
Chala, M., Ramos, M., & Spannowsky, M. (2019). Gravitational wave and collider probes of a triplet Higgs sector with a low cutoff. The European Physical Journal C, 79(2), Article 156. https://doi.org/10.1140/epjc/s10052-019-6655-1 - Angles on CP-violation in Higgs boson interactions
Bernlochner, F. U., Englert, C., Hays, C., Lohwasser, K., Mildner, H., Pilkington, A., Price, D. D., & Spannowsky, M. (2019). Angles on CP-violation in Higgs boson interactions. Physics Letters B, 790, 372-379. https://doi.org/10.1016/j.physletb.2019.01.043 - Machine learning uncertainties with adversarial neural networks
Englert, C., Galler, P., Harris, P., & Spannowsky, M. (2019). Machine learning uncertainties with adversarial neural networks. The European Physical Journal C, 79(1), Article 4. https://doi.org/10.1140/epjc/s10052-018-6511-8 - Adversarially-trained autoencoders for robust unsupervised new physics searches
Blance, A., Spannowsky, M., & Waite, P. (2019). Adversarially-trained autoencoders for robust unsupervised new physics searches. Journal of High Energy Physics, 2019(10), Article 047. https://doi.org/10.1007/jhep10%282019%29047 - Probing electroweak precision physics via boosted Higgs-strahlung at the LHC
Banerjee, S., Englert, C., Gupta, R. S., & Spannowsky, M. (2018). Probing electroweak precision physics via boosted Higgs-strahlung at the LHC. Physical Review D, 98(9), Article 095012. https://doi.org/10.1103/physrevd.98.095012 - Searching for processes with invisible particles using a matrix element-based method
Ferreira de Lima, D. E., Mattelaer, O., & Spannowsky, M. (2018). Searching for processes with invisible particles using a matrix element-based method. Physics Letters B, 787, 100-104. https://doi.org/10.1016/j.physletb.2018.10.044 - Particle physics with gravitational wave detector technology
Englert, C., Hild, S., & Spannowsky, M. (2018). Particle physics with gravitational wave detector technology. European Physical Society Letters, 123(4), Article 41001. https://doi.org/10.1209/0295-5075/123/41001 - Top quark FCNCs in extended Higgs sectors
Banerjee, S., Chala, M., & Spannowsky, M. (2018). Top quark FCNCs in extended Higgs sectors. The European Physical Journal C, 78(8), Article 683. https://doi.org/10.1140/epjc/s10052-018-6150-0 - Searching for Leptoquarks at IceCube and the LHC
Dey, U. K., Kar, D., Mitra, M., Spannowsky, M., & Vincent, A. C. (2018). Searching for Leptoquarks at IceCube and the LHC. Physical Review D, 98(3), Article 035014. https://doi.org/10.1103/physrevd.98.035014 - Probing the type-II seesaw mechanism through the production of Higgs bosons at a lepton collider
Agrawal, P., Mitra, M., Niyogi, S., Shil, S., & Spannowsky, M. (2018). Probing the type-II seesaw mechanism through the production of Higgs bosons at a lepton collider. Physical Review D, 98(1), Article 015024. https://doi.org/10.1103/physrevd.98.015024 - hh+Jet production at 100 TeV
Banerjee, S., Englert, C., Mangano, M. L., Selvaggi, M., & Spannowsky, M. (2018). hh+Jet production at 100 TeV. The European Physical Journal C, 78(4), Article 322. https://doi.org/10.1140/epjc/s10052-018-5788-y - Double-charming Higgs boson identification using machine-learning assisted jet shapes
Lenz, A., Spannowsky, M., & Tetlalmatzi-Xolocotzi, G. (2018). Double-charming Higgs boson identification using machine-learning assisted jet shapes. Physical Review D, 97(1), Article 016001. https://doi.org/10.1103/physrevd.97.016001 - Higgsplosion: Solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons
Khoze, V. V., & Spannowsky, M. (2018). Higgsplosion: Solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons. Nuclear Physics B, 926, 95-111. https://doi.org/10.1016/j.nuclphysb.2017.11.002 - Jet-associated resonance spectroscopy
Englert, C., Ferretti, G., & Spannowsky, M. (2017). Jet-associated resonance spectroscopy. The European Physical Journal C, 77(12), Article 842. https://doi.org/10.1140/epjc/s10052-017-5416-2 - Maxi-sizing the trilinear Higgs self-coupling: how large could it be?
Di Luzio, L., Gröber, R., & Spannowsky, M. (2017). Maxi-sizing the trilinear Higgs self-coupling: how large could it be?. The European Physical Journal C, 77, Article 788. https://doi.org/10.1140/epjc/s10052-017-5361-0 - Higgs characterisation in the presence of theoretical uncertainties and invisible decays
Englert, C., Kogler, R., Schulz, H., & Spannowsky, M. (2017). Higgs characterisation in the presence of theoretical uncertainties and invisible decays. The European Physical Journal C, 77(11), Article 789. https://doi.org/10.1140/epjc/s10052-017-5366-8 - Higgsploding universe
Khoze, V. V., & Spannowsky, M. (2017). Higgsploding universe. Physical Review D, 96(7), Article 075042. https://doi.org/10.1103/physrevd.96.075042 - Heavy neutrinos from gluon fusion
Ruiz, R., Spannowsky, M., & Waite, P. (2017). Heavy neutrinos from gluon fusion. Physical Review D, 96(5), Article 055042. https://doi.org/10.1103/physrevd.96.055042 - Resonant di-Higgs boson production in the bb¯WW Channel: Probing the electroweak phase transition at the LHC
Huang, T., No, J., Pernié, L., Ramsey-Musolf, M., Safonov, A., Spannowsky, M., & Winslow, P. (2017). Resonant di-Higgs boson production in the bb¯WW Channel: Probing the electroweak phase transition at the LHC. Physical Review D, 96(3), Article 035007. https://doi.org/10.1103/physrevd.96.035007 - VBS W±W±H production at the HL-LHC and a 100 TeV pp-collider
Englert, C., Li, Q., Spannowsky, M., Wang, M., & Wang, L. (2017). VBS W±W±H production at the HL-LHC and a 100 TeV pp-collider. International Journal of Modern Physics A, 32(18), Article 1750106. https://doi.org/10.1142/s0217751x17501068 - Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction
Kribs, G. D., Maier, A., Rzehak, H., Spannowsky, M., & Waite, P. (2017). Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction. Physical Review D, 95(9), Article 093004. https://doi.org/10.1103/physrevd.95.093004 - Prospects for new physics in τ→lμμ at current and future colliders
Hays, C., Mitra, M., Spannowsky, M., & Waite, P. (2017). Prospects for new physics in τ→lμμ at current and future colliders. Journal of High Energy Physics, 2017(5), Article 014. https://doi.org/10.1007/jhep05%282017%29014 - Boost to h→Zγ: from LHC to future e+e− colliders
No, J. M., & Spannowsky, M. (2017). Boost to h→Zγ: from LHC to future e+e− colliders. Physical Review D, 95(1), Article 075027. https://doi.org/10.1103/physrevd.95.075027 - Same-sign W pair production in composite Higgs models
Englert, C., Schichtel, P., & Spannowsky, M. (2017). Same-sign W pair production in composite Higgs models. Physical Review D, 95(5), Article 055002. https://doi.org/10.1103/physrevd.95.055002 - Type-II Seesaw Model and Multilepton Signatures at Hadron Colliders
Mitra, M., Niyogi, S., & Spannowsky, M. (2017). Type-II Seesaw Model and Multilepton Signatures at Hadron Colliders. Physical Review D, 95(3), Article 035042. https://doi.org/10.1103/physrevd.95.035042 - Measurement of W boson angular distributions in events with high transverse momentum jets at s√= 8 TeV using the ATLAS detector
Aaboud, M., Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Abeloos, B., Aben, R., AbouZeid, O., Abraham, N., Abramowicz, H., Abreu, H., Abreu, R., Abulaiti, Y., Acharya, B., Adachi, S., Adamczyk, L., Adams, D., Adelman, J., Adomeit, S., Adye, T., …Zwalinski, L. (2017). Measurement of W boson angular distributions in events with high transverse momentum jets at s√= 8 TeV using the ATLAS detector. Physics Letters B, 765, 132-153. https://doi.org/10.1016/j.physletb.2016.12.005 - Invisible decays in Higgs boson pair production
Banerjee, S., Batell, B., & Spannowsky, M. (2017). Invisible decays in Higgs boson pair production. Physical Review D, 95(3), Article 035009. https://doi.org/10.1103/physrevd.95.035009 - Quark-gluon tagging with shower deconstruction: Unearthing dark matter and Higgs couplings
Ferreira de Lima, D., Petrov, P., Soper, D., & Spannowsky, M. (2017). Quark-gluon tagging with shower deconstruction: Unearthing dark matter and Higgs couplings. Physical Review D, 95(3), Article 034001. https://doi.org/10.1103/physrevd.95.034001 - Perturbative Higgs coupling CP violation, unitarity, and phenomenology
Englert, C., Nordström, K., Sakurai, K., & Spannowsky, M. (2017). Perturbative Higgs coupling CP violation, unitarity, and phenomenology. Physical Review D, 95(1), Article 015018. https://doi.org/10.1103/physrevd.95.015018 - Sphalerons in composite and non-standard Higgs models
Spannowsky, M., & Tamarit, C. (2017). Sphalerons in composite and non-standard Higgs models. Physical Review D, 95(1), Article 015006. https://doi.org/10.1103/physrevd.95.015006 - A facility to search for hidden particles at the CERN SPS: the SHiP physics case.
Altmannshofer, W., Asaka, T., Batell, B., Bezrukov, F., Bondarenko, K., Boyarsky, A., Choi, K.-Y., Corral, C., Craig, N., Curtin, D., Davidson, S., de Gouvêa, A., Dell’Oro, S., deNiverville, P., Bhupal Dev, P., Dreiner, H., Drewes, M., Eijima, S., Essig, R., Fradette, A., …Zurek, K. M. (2016). A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Reports on Progress in Physics, 79(12), Article 124201. https://doi.org/10.1088/0034-4885/79/12/124201 - S-Channel Dark Matter Simplified Models and Unitarity
Englert, C., McCullough, M., & Spannowsky, M. (2016). S-Channel Dark Matter Simplified Models and Unitarity. Physics of the Dark Universe, 14, 48-56. https://doi.org/10.1016/j.dark.2016.09.002 - Hearing the signal of dark sectors with gravitational wave detectors
Jaeckel, J., Khoze, V. V., & Spannowsky, M. (2016). Hearing the signal of dark sectors with gravitational wave detectors. Physical Review D, 94(10), Article 103519. https://doi.org/10.1103/physrevd.94.103519 - Jet activity as a probe of diphoton resonance production
Harland-Lang, L., Khoze, V., Ryskin, M., & Spannowsky, M. (2016). Jet activity as a probe of diphoton resonance production. The European Physical Journal C, 76, Article 623. https://doi.org/10.1140/epjc/s10052-016-4471-4 - Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models
Mitra, M., Ruiz, R., Scott, D. J., & Spannowsky, M. (2016). Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models. Physical Review D, 94(9), Article 095016. https://doi.org/10.1103/physrevd.94.095016 - LHC Signatures Of Scalar Dark Energy
Brax, P., Burrage, C., Englert, C., & Spannowsky, M. (2016). LHC Signatures Of Scalar Dark Energy. Physical Review D, 94(8), Article 084054. https://doi.org/10.1103/physrevd.94.084054 - Cosmic ray air showers from sphalerons
Brooijmans, G., Schichtel, P., & Spannowsky, M. (2016). Cosmic ray air showers from sphalerons. Physics Letters B, 761, 213-218. https://doi.org/10.1016/j.physletb.2016.08.030 - Towards resolving strongly-interacting dark sectors at colliders
Englert, C., Nordström, K., & Spannowsky, M. (2016). Towards resolving strongly-interacting dark sectors at colliders. Physical Review D, 94(5), Article 055028. https://doi.org/10.1103/physrevd.94.055028 - Measuring rare and exclusive Higgs boson decays into light resonances
Chisholm, A. S., Kuttimalai, S., Nikolopoulos, K., & Spannowsky, M. (2016). Measuring rare and exclusive Higgs boson decays into light resonances. The European Physical Journal C, 76(9), Article 501. https://doi.org/10.1140/epjc/s10052-016-4345-9 - Searching for supersymmetry scalelessly
Schlaffer, M., Spannowsky, M., & Weiler, A. (2016). Searching for supersymmetry scalelessly. The European Physical Journal C, 76(8), Article 457. https://doi.org/10.1140/epjc/s10052-016-4299-y - Cornering diphoton resonance models at the LHC
Backović, M., Kulkarni, S., Mariotti, A., Sessolo, E. M., & Spannowsky, M. (2016). Cornering diphoton resonance models at the LHC. Journal of High Energy Physics, 2016(08), Article 018. https://doi.org/10.1007/jhep08%282016%29018 - Determining the quantum numbers of simplified models in tt¯X production at the LHC
Dolan, M. J., Spannowsky, M., Wang, Q., & Yu, Z.-H. (2016). Determining the quantum numbers of simplified models in tt¯X production at the LHC. Physical Review D, 94(1), Article 015025. https://doi.org/10.1103/physrevd.94.015025 - Higgs coupling measurements at the LHC
Englert, C., Kogler, R., Schulz, H., & Spannowsky, M. (2016). Higgs coupling measurements at the LHC. The European Physical Journal C, 76(7), Article 393. https://doi.org/10.1140/epjc/s10052-016-4227-1 - The Lepton Flavour Violating Higgs Decays at the HL-LHC and the ILC
Banerjee, S., Bhattacherjee, B., Mitra, M., & Spannowsky, M. (2016). The Lepton Flavour Violating Higgs Decays at the HL-LHC and the ILC. Journal of High Energy Physics, 2016(07), Article 059. https://doi.org/10.1007/jhep07%282016%29059 - Identification of high transverse momentum top quarks in pp collisions at s√=8s=8 TeV with the ATLAS detector
Spannowsky, M., & collaboration, A. (2016). Identification of high transverse momentum top quarks in pp collisions at s√=8s=8 TeV with the ATLAS detector. Journal of High Energy Physics, 2016(06), Article 093. https://doi.org/10.1007/jhep06%282016%29093 - Search for Sphalerons: IceCube vs. LHC
Ellis, J., Sakurai, K., & Spannowsky, M. (2016). Search for Sphalerons: IceCube vs. LHC. Journal of High Energy Physics, 2016(05), Article 085. https://doi.org/10.1007/jhep05%282016%29085 - Measuring the Higgs-bottom coupling in weak boson fusion
Englert, C., Mattelaer, O., & Spannowsky, M. (2016). Measuring the Higgs-bottom coupling in weak boson fusion. Physics Letters B, 756, 103-108. https://doi.org/10.1016/j.physletb.2016.02.074 - New physics and signal-background interference in associated pp → HZ production
Englert, C., Rosenfeld, R., Spannowsky, M., & Tonero, A. (2016). New physics and signal-background interference in associated pp → HZ production. European Physical Society Letters, 114(3), Article 31001. https://doi.org/10.1209/0295-5075/114/31001 - Closing up on Dark Sectors at colliders: from 14 to 100 TeV
Harris, P., Khoze, V. V., Spannowsky, M., & Williams, C. (2016). Closing up on Dark Sectors at colliders: from 14 to 100 TeV. Physical Review D, 93(5), Article 054030. https://doi.org/10.1103/physrevd.93.054030 - Probing MeV to 90 GeV axion-like particles with LEP and LHC
Jaeckel, J., & Spannowsky, M. (2016). Probing MeV to 90 GeV axion-like particles with LEP and LHC. Physics Letters B, 753, 482-487. https://doi.org/10.1016/j.physletb.2015.12.037 - Measuring the signal strength in tt¯HwithH→bb¯
Moretti, N., Petrov, P., Pozzorini, S., & Spannowsky, M. (2016). Measuring the signal strength in tt¯HwithH→bb¯. Physical Review D, 93(1), Article 014019. https://doi.org/10.1103/physrevd.93.014019 - Combining LEP and LHC to bound the Higgs Width
Englert, C., McCullough, M., & Spannowsky, M. (2016). Combining LEP and LHC to bound the Higgs Width. Nuclear Physics B, 902, 440-457. https://doi.org/10.1016/j.nuclphysb.2015.11.017 - Probing a light CP-odd scalar in di-top-associated production at the LHC
Casolino, M., Farooque, T., Juste, A., Liu, T., & Spannowsky, M. (2015). Probing a light CP-odd scalar in di-top-associated production at the LHC. The European Physical Journal C, 75, Article 498. https://doi.org/10.1140/epjc/s10052-015-3708-y - Spectroscopy of scalar mediators to dark matter at the LHC and at 100 TeV
Khoze, V. V., Ro, G., & Spannowsky, M. (2015). Spectroscopy of scalar mediators to dark matter at the LHC and at 100 TeV. Physical Review D, 92(7), Article 075006. https://doi.org/10.1103/physrevd.92.075006 - Augmenting the diboson excess for the LHC Run II
Gonçalves, D., Krauss, F., & Spannowsky, M. (2015). Augmenting the diboson excess for the LHC Run II. Physical Review D, 92(5), https://doi.org/10.1103/physrevd.92.053010 - Towards an Understanding of the Correlations in Jet Substructure
Adams, D., Arce, A., Asquith, L., Backovic, M., Barillari, T., Berta, P., Bertolini, D., Buckley, A., Butterworth, J., Camacho Toro, R., Caudron, J., Chien, Y.-T., Cogan, J., Cooper, B., Curtin, D., Debenedetti, C., Dolen, J., Eklund, M., El Hedri, S., Ellis, S., …Young, C. (2015). Towards an Understanding of the Correlations in Jet Substructure. The European Physical Journal C, 75(9), Article 409. https://doi.org/10.1140/epjc/s10052-015-3587-2 - Unitarity-controlled resonances after the Higgs boson discovery
Englert, C., Harris, P., Spannowsky, M., & Takeuchi, M. (2015). Unitarity-controlled resonances after the Higgs boson discovery. Physical Review D, 92(1), Article 013003. https://doi.org/10.1103/physrevd.92.013003 - Signs of Tops from Highly Mixed Stops
Backović, M., Mariotti, A., & Spannowsky, M. (2015). Signs of Tops from Highly Mixed Stops. Journal of High Energy Physics, 2015(06), Article 122. https://doi.org/10.1007/jhep06%282015%29122 - Off-Shell Higgs Coupling Measurements in BSM scenarios
Englert, C., Soteq, Y., & Spannowsky, M. (2015). Off-Shell Higgs Coupling Measurements in BSM scenarios. Journal of High Energy Physics, 2015(05), Article 145. https://doi.org/10.1007/jhep05%282015%29145 - On-shell interference effects in Higgs boson final states
Englert, C., Low, I., & Spannowsky, M. (2015). On-shell interference effects in Higgs boson final states. Physical Review D, 91(7), Article 074029. https://doi.org/10.1103/physrevd.91.074029 - Di-Higgs phenomenology in t¯thh: The forgotten channel
Englert, C., Krauss, F., Spannowsky, M., & Thompson, J. (2015). Di-Higgs phenomenology in t¯thh: The forgotten channel. Physics Letters B, 743, 93-97. https://doi.org/10.1016/j.physletb.2015.02.041 - Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach
Harris, P., Khoze, V. V., Spannowsky, M., & Williams, C. (2015). Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach. Physical Review D, 91(5), https://doi.org/10.1103/physrevd.91.055009 - Higgs Self-Coupling Measurements at a 100 TeV Hadron Collider
Barr, A. J., Dolan, M. J., Englert, C., Ferreira de Lima, D. E., & Spannowsky, M. (2015). Higgs Self-Coupling Measurements at a 100 TeV Hadron Collider. Journal of High Energy Physics, 2015(02), Article 016. https://doi.org/10.1007/jhep02%282015%29016 - Effective Theories and Measurements at Colliders
Englert, C., & Spannowsky, M. (2015). Effective Theories and Measurements at Colliders. Physics Letters B, 740, 8-15. https://doi.org/10.1016/j.physletb.2014.11.035 - Searching for a Heavy Higgs boson in a Higgs-portal B-L Model
Banerjee, S., Mitra, M., & Spannowsky, M. (2015). Searching for a Heavy Higgs boson in a Higgs-portal B-L Model. Physical Review D, D92(5), https://doi.org/10.1103/physrevd.92.055013 - Tracking New Physics at the LHC and beyond
Spannowsky, M., & Stoll, M. (2015). Tracking New Physics at the LHC and beyond. Physical Review D, D92(5), https://doi.org/10.1103/physrevd.92.054033 - hhjj production at the LHC
Dolan, M. J., Englert, C., Greiner, N., Nordstrom, K., & Spannowsky, M. (2015). hhjj production at the LHC. The European Physical Journal C, 75(8), Article 387. https://doi.org/10.1140/epjc/s10052-015-3622-3 - Scattering of Dark Particles with Light Mediators
Soper, D. E., Spannowsky, M., Wallace, C., & Tait, T. M. (2014). Scattering of Dark Particles with Light Mediators. Physical Review D, 90(11), Article 115005. https://doi.org/10.1103/physrevd.90.115005 - Boosted Higgs Shapes
Schlaffer, M., Spannowsky, M., Takeuchi, M., Weiler, A., & Wymant, C. (2014). Boosted Higgs Shapes. The European Physical Journal C, 74(10), https://doi.org/10.1140/epjc/s10052-014-3120-z - Constraining CP-violating Higgs sectors at the LHC using gluon fusion
Dolan, M. J., Harris, P., Jankowiak, M., & Spannowsky, M. (2014). Constraining CP-violating Higgs sectors at the LHC using gluon fusion. Physical Review D, 90(7), Article 073008. https://doi.org/10.1103/physrevd.90.073008 - Reconstructing singly produced top partners in decays to Wb
Gutierrez Ortiz, N., Ferrando, J., Kar, D., & Spannowsky, M. (2014). Reconstructing singly produced top partners in decays to Wb. Physical Review D, 90(7), Article 075009. https://doi.org/10.1103/physrevd.90.075009 - Limitations and opportunities of off-shell coupling measurements
Englert, C., & Spannowsky, M. (2014). Limitations and opportunities of off-shell coupling measurements. Physical Review D, 90(5), Article 053003. https://doi.org/10.1103/physrevd.90.053003 - Standard model Higgs boson pair production in the ( bb¯ )( bb¯ ) final state
Ferreira de Lima, D., Papaefstathiou, A., & Spannowsky, M. (2014). Standard model Higgs boson pair production in the ( bb¯ )( bb¯ ) final state. Journal of High Energy Physics, 2014(8), Article 030. https://doi.org/10.1007/jhep08%282014%29030 - Resolving the Higgs-gluon coupling with jets
Buschmann, M., Englert, C., Goncalvec, D., Plehn, T., & Spannowsky, M. (2014). Resolving the Higgs-gluon coupling with jets. Physical Review D, 90(1), Article 013010. https://doi.org/10.1103/physrevd.90.013010 - Dark Sector spectroscopy at the ILC
Andersen, J. R., Rauch, M., & Spannowsky, M. (2014). Dark Sector spectroscopy at the ILC. The European Physical Journal C, 74(6), Article 2908. https://doi.org/10.1140/epjc/s10052-014-2908-1 - Measuring collinear W emissions inside jets
Krauss, F., Petrov, P., Schönherr, M., & Spannowsky, M. (2014). Measuring collinear W emissions inside jets. Physical Review D, 89(11), Article 114006. https://doi.org/10.1103/physrevd.89.114006 - Finding physics signals with event deconstruction
Soper, D. E., & Spannowsky, M. (2014). Finding physics signals with event deconstruction. Physical Review D, 89(9), Article 094005. https://doi.org/10.1103/physrevd.89.094005 - Extended gamma-ray emission from Coy Dark Matter
Bœhm, C., Dolan, M. J., McCabe, C., & Spannowsky, M. (2014). Extended gamma-ray emission from Coy Dark Matter. Journal of Cosmology and Astroparticle Physics, 2014(05), Article 009. https://doi.org/10.1088/1475-7516/2014/05/009 - Nonstandard top substructure
Englert, C., Gonçalves, D., & Spannowsky, M. (2014). Nonstandard top substructure. Physical Review D, 89(7), Article 074038. https://doi.org/10.1103/physrevd.89.074038 - Boosting Top Partner Searches in Composite Higgs Models
Azatov, A., Salvarezza, M., Son, M., & Spannowsky, M. (2014). Boosting Top Partner Searches in Composite Higgs Models. Physical Review D, 89(7), Article 075001. https://doi.org/10.1103/physrevd.89.075001 - Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012
Altheimer, A., Arce, A., Asquith, L., Spannowsky, M., & et al. (2014). Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012. The European Physical Journal C, 74(3), Article 2792. https://doi.org/10.1140/epjc/s10052-014-2792-8 - Production of hhjj at the LHC
Dolan, M. J., Englert, C., Greiner, N., & Spannowsky, M. (2014). Production of hhjj at the LHC. Physical Review Letters, 112(10), Article 101802. https://doi.org/10.1103/physrevlett.112.101802 - Gluon-initiated associated production boosts Higgs physics
Englert, C., McCullough, M., & Spannowsky, M. (2014). Gluon-initiated associated production boosts Higgs physics. Physical Review D, 89(1), Article 013013. https://doi.org/10.1103/physrevd.89.013013 - Di-Higgs final states augMT2ed – Selecting hh events at the high luminosity LHC
Barr, A. J., Dolan, M. J., Englert, C., & Spannowsky, M. (2014). Di-Higgs final states augMT2ed – Selecting hh events at the high luminosity LHC. Physics Letters B, 728, 308-313. https://doi.org/10.1016/j.physletb.2013.12.011 - Tagging highly boosted top quarks
Schätzel, S., & Spannowsky, M. (2014). Tagging highly boosted top quarks. Physical Review D, 89(1), Article 014007. https://doi.org/10.1103/physrevd.89.014007 - LHC probes the hidden sector
Jaeckel, J., Jankowiak, M., & Spannowsky, M. (2013). LHC probes the hidden sector. Physics of the Dark Universe, 2(3), 111-117. https://doi.org/10.1016/j.dark.2013.06.001 - Pinning down Higgs triplets at the LHC
Englert, C., Re, E., & Spannowsky, M. (2013). Pinning down Higgs triplets at the LHC. Physical Review D, 88(3), Article 035024. https://doi.org/10.1103/physrevd.88.035024 - The shape of spins
Englert, C., Gonçalves, D., Nail, G., & Spannowsky, M. (2013). The shape of spins. Physical Review D, 88(1), Article 013016. https://doi.org/10.1103/physrevd.88.013016 - Triplet Higgs boson collider phenomenology after the LHC
Englert, C., Re, E., & Spannowsky, M. (2013). Triplet Higgs boson collider phenomenology after the LHC. Physical Review D, 87(9), Article 095014. https://doi.org/10.1103/physrevd.87.095014 - Emergence of the electroweak scale through the Higgs portal
Englert, C., Jaeckel, J., Khoze, V., & Spannowsky, M. (2013). Emergence of the electroweak scale through the Higgs portal. Journal of High Energy Physics, 2013(4), Article 60. https://doi.org/10.1007/jhep04%282013%29060 - Making the most of missing transverse energy: Mass reconstruction from collimated decays
Spannowsky, M., & Wymant, C. (2013). Making the most of missing transverse energy: Mass reconstruction from collimated decays. Physical Review D, 87(7), Article 074004. https://doi.org/10.1103/physrevd.87.074004 - Finding top quarks with shower deconstruction
Soper, D. E., & Spannowsky, M. (2013). Finding top quarks with shower deconstruction. Physical Review D, 87(5), Article 054012. https://doi.org/10.1103/physrevd.87.054012 - New Physics in LHC Higgs boson pair production
Dolan, M. J., Englert, C., & Spannowsky, M. (2013). New Physics in LHC Higgs boson pair production. Physical Review D, 87(5), Article 055002. https://doi.org/10.1103/physrevd.87.055002 - Extracting precise Higgs couplings by using the matrix element method
Andersen, J., Englert, C., & Spannowsky, M. (2013). Extracting precise Higgs couplings by using the matrix element method. Physical Review D, 87(1), Article 015019. https://doi.org/10.1103/physrevd.87.015019 - Partially (in)visible Higgs decays at the LHC.
Englert, C., Spannowsky, M., & Wymant, C. (2012). Partially (in)visible Higgs decays at the LHC. Physics Letters B, 718(2), 538-544. https://doi.org/10.1016/j.physletb.2012.11.008 - Higgs self-coupling measurements at the LHC.
Dolan, M. J., Englert, C., & Spannowsky, M. (2012). Higgs self-coupling measurements at the LHC. Journal of High Energy Physics, 2012(10), Article 112. https://doi.org/10.1007/jhep10%282012%29112 - Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks
al, A. E., & Spannowsky, M. (2012). Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks. Journal of Physics G: Nuclear and Particle Physics, 39(6), Article 063001. https://doi.org/10.1088/0954-3899/39/6/063001 - Evasive Higgs Boson Maneuvers at the LHC
Englert, C., Jaeckel, J., Re, E., & Spannowsky, M. (2012). Evasive Higgs Boson Maneuvers at the LHC. Physical Review D, Particles and fields, 85(3), Article 035008. https://doi.org/10.1103/physrevd.85.035008 - How to Improve Top Tagging
Plehn, T., Spannowsky, M., & Takeuchi, M. (2012). How to Improve Top Tagging. Physical Review D, 85(3), https://doi.org/10.1103/physrevd.85.034029 - The dependency of boosted tagging algorithms on the event colour structure
Joshi, K., Pilkington, A. D., & Spannowsky, M. (2012). The dependency of boosted tagging algorithms on the event colour structure. Physical Review D, 86(11), https://doi.org/10.1103/physrevd.86.114016 - Stop searches in 2012
Plehn, T., Spannowsky, M., & Takeuchi, M. (2012). Stop searches in 2012. Journal of High Energy Physics, 2012(8), https://doi.org/10.1007/jhep08%282012%29091 - Enhanced Gamma Ray Signals in Cosmic Proton-Wimp Collisions Due to Hadronization
Chang, S., Gao, Y., & Spannowsky, M. (2012). Enhanced Gamma Ray Signals in Cosmic Proton-Wimp Collisions Due to Hadronization. Journal of Cosmology and Astroparticle Physics, 2012(11), https://doi.org/10.1088/1475-7516/2012/11/053 - Unconstraining the Unhiggs
Englert, C., Spannowsky, M., Stancato, D., & Terning, J. (2012). Unconstraining the Unhiggs. Physical Review D, 85(9), https://doi.org/10.1103/physrevd.85.095003 - On jet mass distributions in Z+jet and dijet processes at the LHC
Dasgupta, M., Khelifa-Kerfa, K., Marzani, S., & Spannowsky, M. (2012). On jet mass distributions in Z+jet and dijet processes at the LHC. Journal of High Energy Physics, 2012(10), https://doi.org/10.1007/jhep10%282012%29126 - Measuring Higgs CP and couplings with hadronic event shapes
Englert, C., Spannowsky, M., & Takeuchi, M. (2012). Measuring Higgs CP and couplings with hadronic event shapes. Journal of High Energy Physics, 2012(6), https://doi.org/10.1007/jhep06%282012%29108 - Constraining the Unhiggs with LHC data
Englert, C., Goncalvec Netto, D., Spannowsky, M., & Terning, J. (2012). Constraining the Unhiggs with LHC data. Physical Review D, 86(3), https://doi.org/10.1103/physrevd.86.035010 - AtFB meets LHC
Hewett, J. L., Shelton, J., Spannowsky, M., Tait, T. M., & Takeuchi, M. (2011). AtFB meets LHC. Physical Review D, 84(5), Article 054005. https://doi.org/10.1103/physrevd.84.054005 - Finding physics signals with shower deconstruction.
Soper, D., & Spannowsky, M. (2011). Finding physics signals with shower deconstruction. Physical Review D, 84(7), Article 074002. https://doi.org/10.1103/physrevd.84.074002 - Discovering the Higgs Boson in New Physics Events using Jet Substructure
Kribs, G. D., Martin, A., Roy, T. S., & Spannowsky, M. (2010). Discovering the Higgs Boson in New Physics Events using Jet Substructure. Physical Review D, 81(11), Article 111501. https://doi.org/10.1103/physrevd.81.111501 - Fat Jets for a Light Higgs Boson
Plehn, T., Salam, G. P., & Spannowsky, M. (2010). Fat Jets for a Light Higgs Boson. Physical Review Letters, 104(11), Article 111801. https://doi.org/10.1103/physrevlett.104.111801 - Stop Reconstruction with Tagged Tops
Plehn, T., Spannowsky, M., Takeuchi, M., & Zerwas, D. (2010). Stop Reconstruction with Tagged Tops. Journal of High Energy Physics, 2010(10), Article 078. https://doi.org/10.1007/jhep10%282010%29078
Report
- Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector
de Florian, D., Grojean, C., Maltoni, F., Spannowsky, M., & et al. (2017). Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. [No known commissioning body]
Supervision students
Despoina Dimakou
PGR Student
Puya Mirkarimi
PGR Student