Staff profile
Overview
https://apps.dur.ac.uk/biography/image/2
Professor Michael Spannowsky
Director of Institute of Particle Physics Phenomenology
Affiliation | Telephone |
---|---|
Director of Institute of Particle Physics Phenomenology in the Department of Physics | +44 (0) 191 33 43636 |
Professor in the Department of Physics | +44 (0) 191 33 43636 |
Director in the Institute for Particle Physics Phenomenology |
Publications
Conference Paper
- The Higgs Portal and CosmologyAssamagan, K., Spannowsky, M., & others. (2016). The Higgs Portal and Cosmology [Conference paper].
Journal Article
- Optimal equivariant architectures from the symmetries of matrix-element likelihoodsMaître, D., Ngairangbam, V. S., & Spannowsky, M. (2025). Optimal equivariant architectures from the symmetries of matrix-element likelihoods. Machine Learning: Science and Technology, 6(1), Article 015059. https://doi.org/10.1088/2632-2153/adbab1
- Generating quantum reservoir state representations with random matricesTovey, S., Fellner, T., Holm, C., & Spannowsky, M. (2025). Generating quantum reservoir state representations with random matrices. Machine Learning: Science and Technology, 6(1), Article 015068. https://doi.org/10.1088/2632-2153/adc0e2
- Probing right-handed neutrinos via trilepton signals at the HL-LHCMitra, M., Saha, S., Spannowsky, M., & Takeuchi, M. (2025). Probing right-handed neutrinos via trilepton signals at the HL-LHC. Physical Review D, 111(1), Article 015005. https://doi.org/10.1103/PhysRevD.111.015005
- Electroweak corrections and EFT operators in W+W− production at the LHCBanerjee, S., Reichelt, D., & Spannowsky, M. (2024). Electroweak corrections and EFT operators in W+W− production at the LHC. Physical Review D, 110(11). https://doi.org/10.1103/physrevd.110.115012
- Simulating Z 2 lattice gauge theory with the variational quantum thermalizerFromm, M., Philipsen, O., Spannowsky, M., & Winterowd, C. (2024). Simulating Z 2 lattice gauge theory with the variational quantum thermalizer. EPJ Quantum Technology, 11(1), 20. https://doi.org/10.1140/epjqt/s40507-024-00232-2
- Enhancing quantum field theory simulations on NISQ devices with Hamiltonian truncationIngoldby, J., Spannowsky, M., Sypchenko, T., & Williams, S. (2024). Enhancing quantum field theory simulations on NISQ devices with Hamiltonian truncation. Physical Review D, 110(9), Article 096016. https://doi.org/10.1103/physrevd.110.096016
- Dispelling the L myth for the High-Luminosity LHCBelvedere, A., Englert, C., Kogler, R., & Spannowsky, M. (2024). Dispelling the L myth for the High-Luminosity LHC. The European Physical Journal C, 84(7), Article 715. https://doi.org/10.1140/epjc/s10052-024-13032-w
- Equivariant, safe and sensitive — graph networks for new physicsBhardwaj, A., Englert, C., Naskar, W., Ngairangbam, V. S., & Spannowsky, M. (2024). Equivariant, safe and sensitive — graph networks for new physics. Journal of High Energy Physics, 2024(7), Article 245. https://doi.org/10.1007/jhep07%282024%29245
- Simulating quantum field theories on continuous-variable quantum computersAbel, S., Spannowsky, M., & Williams, S. (2024). Simulating quantum field theories on continuous-variable quantum computers. Physical Review A, 110(1), Article 012607. https://doi.org/10.1103/physreva.110.012607
- Training neural networks with universal adiabatic quantum computingAbel, S., Criado, J. C., & Spannowsky, M. (2024). Training neural networks with universal adiabatic quantum computing. Frontiers in Artificial Intelligence, 7, Article 1368569. https://doi.org/10.3389/frai.2024.1368569
- Exploring thermal equilibria of the Fermi-Hubbard model with variational quantum algorithmsAraz, J. Y., Spannowsky, M., & Wingate, M. (2024). Exploring thermal equilibria of the Fermi-Hubbard model with variational quantum algorithms. Physical Review A, 109(6), Article 062422. https://doi.org/10.1103/physreva.109.062422
- Charting the free energy landscape of metastable topological magnetic objectsCriado, J. C., Hatton, P. D., Lanza, Álvaro, Schenk, S., & Spannowsky, M. (2024). Charting the free energy landscape of metastable topological magnetic objects. Physical Review B, 109(19), Article 195114. https://doi.org/10.1103/physrevb.109.195114
- Quantum pathways for charged track finding in high-energy collisionsBrown, C., Spannowsky, M., Tapper, A., Williams, S., & Xiotidis, I. (2024). Quantum pathways for charged track finding in high-energy collisions. Frontiers in Artificial Intelligence, 7, Article 1339785. https://doi.org/10.3389/frai.2024.1339785
- Higgs boson off-shell measurements probe nonlinearitiesAnisha, Englert, C., Kogler, R., & Spannowsky, M. (2024). Higgs boson off-shell measurements probe nonlinearities. Physical Review D, 109(9), Article 095033. https://doi.org/10.1103/physrevd.109.095033
- Interpretable deep learning models for the inference and classification of LHC dataNgairangbam, V. S., & Spannowsky, M. (2024). Interpretable deep learning models for the inference and classification of LHC data. Journal of High Energy Physics, 2024(5), Article 4. https://doi.org/10.1007/jhep05%282024%29004
- Three-Body Entanglement in Particle Decays.Sakurai, K., & Spannowsky, M. (2024). Three-Body Entanglement in Particle Decays. Physical Review Letters, 132(15), Article 151602. https://doi.org/10.1103/PhysRevLett.132.151602
- EFT, decoupling, Higgs boson mixing, and higher dimensional operatorsBanerjee, U., Chakrabortty, J., Englert, C., Naskar, W., Rahaman, S. U., & Spannowsky, M. (2024). EFT, decoupling, Higgs boson mixing, and higher dimensional operators. Physical Review D, 109(5), Article 055035. https://doi.org/10.1103/physrevd.109.055035
- Prospects for exotic h→4τ decays in single and di-Higgs boson production at the LHC and future hadron collidersAdhikary, A., Banerjee, S., Barman, R. K., Batell, B., Bhattacherjee, B., Bose, C., Qian, Z., & Spannowsky, M. (2024). Prospects for exotic h→4τ decays in single and di-Higgs boson production at the LHC and future hadron colliders. Physical Review D, 109(5), Article 055008. https://doi.org/10.1103/physrevd.109.055008
- FeynMG: A FeynRules extension for scalar-tensor theories of gravitySevillano Muñoz, S., Copeland, E. J., Millington, P., & Spannowsky, M. (2024). FeynMG: A FeynRules extension for scalar-tensor theories of gravity. Computer Physics Communications, 296, Article 109035. https://doi.org/10.1016/j.cpc.2023.109035
- Generative invertible quantum neural networksRousselot, A., & Spannowsky, M. (2024). Generative invertible quantum neural networks. SciPost Physics, 16(6), Article 146. https://doi.org/10.21468/scipostphys.16.6.146
- Hypergraphs in LHC phenomenology — the next frontier of IRC-safe feature extractionKonar, P., Ngairangbam, V. S., & Spannowsky, M. (2024). Hypergraphs in LHC phenomenology — the next frontier of IRC-safe feature extraction. Journal of High Energy Physics, 2024(1), Article 113. https://doi.org/10.1007/jhep01%282024%29113
- Quantum-probabilistic Hamiltonian learning for generative modeling and anomaly detectionAraz, J. Y., & Spannowsky, M. (2023). Quantum-probabilistic Hamiltonian learning for generative modeling and anomaly detection. Physical Review A, 108(6), Article 062422. https://doi.org/10.1103/physreva.108.062422
- Deuterium spectroscopy for enhanced bounds on physics beyond the standard modelPotvliege, R. M., Nicolson, A., Jones, M. P. A., & Spannowsky, M. (2023). Deuterium spectroscopy for enhanced bounds on physics beyond the standard model. Physical Review A, 108(5), Article 052825. https://doi.org/10.1103/physreva.108.052825
- Probing Poincaré violationGupta, R., Jaeckel, J., & Spannowsky, M. (2023). Probing Poincaré violation. Journal of High Energy Physics, 2023(11), 26. https://doi.org/10.1007/jhep11%282023%29026
- Hunting for neutral leptons with ultrahigh-energy neutrinosHeighton, R., Heurtier, L., & Spannowsky, M. (2023). Hunting for neutral leptons with ultrahigh-energy neutrinos. Physical Review D, 108(5), Article 055009. https://doi.org/10.1103/physrevd.108.055009
- Toward a quantum simulation of nonlinear sigma models with a topological termAraz, J. Y., Schenk, S., & Spannowsky, M. (2023). Toward a quantum simulation of nonlinear sigma models with a topological term. Physical Review A, 107(3). https://doi.org/10.1103/physreva.107.032619
- Integrating out heavy scalars with modified equations of motion: Matching computation of dimension-eight SMEFT coefficientsBanerjee, U., Chakrabortty, J., Englert, C., Rahaman, S. U., & Spannowsky, M. (2023). Integrating out heavy scalars with modified equations of motion: Matching computation of dimension-eight SMEFT coefficients. Physical Review D, 107(5), Article 055007. https://doi.org/10.1103/physrevd.107.055007
- Qade: solving differential equations on quantum annealersCriado, J. C., & Spannowsky, M. (2023). Qade: solving differential equations on quantum annealers. Quantum Science and Technology, 8(1), Article 015021. https://doi.org/10.1088/2058-9565/acaa51
- Effective limits on single scalar extensions in the light of recent LHC dataAnisha, Das Bakshi, S., Banerjee, S., Biekötter, A., Chakrabortty, J., Patra, S. K., & Spannowsky, M. (2023). Effective limits on single scalar extensions in the light of recent LHC data. Physical Review D, 107(5), Article 055028. https://doi.org/10.1103/physrevd.107.055028
- Completely quantum neural networksAbel, S., Criado, J. C., & Spannowsky, M. (2022). Completely quantum neural networks. Physical Review A, 106(2), Article 022601. https://doi.org/10.1103/physreva.106.022601
- Secluded dark matter in gauged B − L modelBandyopadhyay, P., Mitra, M., Padhan, R., Roy, A., & Spannowsky, M. (2022). Secluded dark matter in gauged B − L model. Journal of High Energy Physics, 2022(5), Article 182. https://doi.org/10.1007/jhep05%282022%29182
- Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithmKonar, P., Ngairangbam, V. S., & Spannowsky, M. (2022). Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithm. Journal of High Energy Physics, 2022(2), Article 60. https://doi.org/10.1007/jhep02%282022%29060
- Quantum optimization of complex systems with a quantum annealerAbel, S., Blance, A., & Spannowsky, M. (2022). Quantum optimization of complex systems with a quantum annealer. Physical Review. A., 106(4). https://doi.org/10.1103/physreva.106.042607
- Anomaly detection in high-energy physics using a quantum autoencoderNgairangbam, V. S., Spannowsky, M., & Takeuchi, M. (2022). Anomaly detection in high-energy physics using a quantum autoencoder. Physical Review D, 105(9), Article 095004. https://doi.org/10.1103/physrevd.105.095004
- Simulating anti-skyrmions on a latticeCriado, J. C., Schenk, S., Spannowsky, M., Hatton, P. D., & Turnbull, L. (2022). Simulating anti-skyrmions on a lattice. Scientific Reports, 12, Article 19179. https://doi.org/10.1038/s41598-022-22043-0
- Landscaping CP-violating BSM scenariosDas Bakshi, S., Chakrabortty, J., Englert, C., Spannowsky, M., & Stylianou, P. (2022). Landscaping CP-violating BSM scenarios. Nuclear Physics B, 975. https://doi.org/10.1016/j.nuclphysb.2022.115676
- IRC-Safe Graph Autoencoder for Unsupervised Anomaly DetectionAtkinson, O., Bhardwaj, A., Englert, C., Konar, P., Ngairangbam, V. S., & Spannowsky, M. (2022). IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection. Frontiers in Artificial Intelligence, 5, Article 943135. https://doi.org/10.3389/frai.2022.943135
- Collider events on a quantum computerGustafson, G., Prestel, S., Spannowsky, M., & Williams, S. (2022). Collider events on a quantum computer. Journal of High Energy Physics, 2022(11), Article 35. https://doi.org/10.1007/jhep11%282022%29035
- Quantum walk approach to simulating parton showersBepari, K., Malik, S., Spannowsky, M., & Williams, S. (2022). Quantum walk approach to simulating parton showers. Physical Review D, 106(5). https://doi.org/10.1103/physrevd.106.056002
- A duality connecting neural network and cosmological dynamicsKrippendorf, S., & Spannowsky, M. (2022). A duality connecting neural network and cosmological dynamics. Machine Learning: Science and Technology, 3(3). https://doi.org/10.1088/2632-2153/ac87e9
- Effective connections of aμ , Higgs physics, and the collider frontierAnisha, Banerjee, U., Chakrabortty, J., Englert, C., Spannowsky, M., & Stylianou, P. (2022). Effective connections of aμ , Higgs physics, and the collider frontier. Physical Review D, 105(1). https://doi.org/10.1103/physrevd.105.016019
- Coloring mixed QCD/QED evolutionGellersen, L., Prestel, S., & Spannowsky, M. (2022). Coloring mixed QCD/QED evolution. SciPost Physics, 13(2). https://doi.org/10.21468/scipostphys.13.2.034
- Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture ModelsAlvarez, E., Spannowsky, M., & Szewc, M. (2022). Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models. Frontiers in Artificial Intelligence, 5, Article 852970. https://doi.org/10.3389/frai.2022.852970
- Electroweak skyrmions in the HEFTCriado, J. C., Khoze, V. V., & Spannowsky, M. (2021). Electroweak skyrmions in the HEFT. Journal of High Energy Physics, 2021(12), Article 26. https://doi.org/10.1007/jhep12%282021%29026
- Small instantons and the strong CP problem in composite Higgs modelsGupta, R., Khoze, V., & Spannowsky, M. (2021). Small instantons and the strong CP problem in composite Higgs models. Physical Review D, 104(7), Article 075011. https://doi.org/10.1103/physrevd.104.075011
- EFT diagrammatica: UV roots of the CP-conserving SMEFTBakshi, S. D., Chakrabortty, J., Prakash, S., Rahaman, S. U., & Spannowsky, M. (2021). EFT diagrammatica: UV roots of the CP-conserving SMEFT. Journal of High Energy Physics, 2021(6), Article 33. https://doi.org/10.1007/jhep06%282021%29033
- Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False VacuumAbel, S., & Spannowsky, M. (2021). Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum, 2(1), Article 010349. https://doi.org/10.1103/prxquantum.2.010349
- Precision SMEFT bounds from the VBF Higgs at high transverse momentumAraz, J. Y., Banerjee, S., Gupta, R. S., & Spannowsky, M. (2021). Precision SMEFT bounds from the VBF Higgs at high transverse momentum. Journal of High Energy Physics, 2021(4), Article 125. https://doi.org/10.1007/jhep04%282021%29125
- Exploring instantons in nonlinear sigma models with spin-lattice systemsSchenk, S., & Spannowsky, M. (2021). Exploring instantons in nonlinear sigma models with spin-lattice systems. Physical Review B, 103(14), Article 144436. https://doi.org/10.1103/physrevb.103.144436
- The emergence of electroweak Skyrmions through Higgs bosonsCriado, J. C., Khoze, V. V., & Spannowsky, M. (2021). The emergence of electroweak Skyrmions through Higgs bosons. Journal of High Energy Physics, 2021(3), Article 162. https://doi.org/10.1007/jhep03%282021%29162
- CP violation at ATLAS in effective field theoryDas Bakshi, S., Chakrabortty, J., Englert, C., Spannowsky, M., & Stylianou, P. (2021). CP violation at ATLAS in effective field theory. Physical Review D, 103(5), Article 055008. https://doi.org/10.1103/physrevd.103.055008
- Cosmological bubble friction in local equilibriumBalaji, S., Spannowsky, M., & Tamarit, C. (2021). Cosmological bubble friction in local equilibrium. Journal of Cosmology and Astroparticle Physics, 2021(03), Article 051. https://doi.org/10.1088/1475-7516/2021/03/051
- Effective operator bases for beyond Standard Model scenarios: an EFT compendium for discoveriesBanerjee, U., Chakrabortty, J., Prakash, S., Rahaman, S. U., & Spannowsky, M. (2021). Effective operator bases for beyond Standard Model scenarios: an EFT compendium for discoveries. Journal of High Energy Physics, 2021(1), Article 28. https://doi.org/10.1007/jhep01%282021%29028
- Combine and conquer: event reconstruction with Bayesian Ensemble Neural NetworksAraz, J. Y., & Spannowsky, M. (2021). Combine and conquer: event reconstruction with Bayesian Ensemble Neural Networks. Journal of High Energy Physics, 2021(4), Article 296. https://doi.org/10.1007/jhep04%282021%29296
- Quantum computing for quantum tunnelingAbel, S., Chancellor, N., & Spannowsky, M. (2021). Quantum computing for quantum tunneling. Physical Review D, 103(1), Article 016008. https://doi.org/10.1103/physrevd.103.016008
- Spectral walls in multifield kink dynamicsAdam, C., Oles, K., Romanczukiewicz, T., Wereszczynski, A., & Zakrzewski, W. (2021). Spectral walls in multifield kink dynamics. Journal of High Energy Physics, 2021(8). https://doi.org/10.1007/jhep08%282021%29147
- Quantum machine learning for particle physics using a variational quantum classifierBlance, A., & Spannowsky, M. (2021). Quantum machine learning for particle physics using a variational quantum classifier. Journal of High Energy Physics, 2021, Article 212. https://doi.org/10.1007/jhep02%282021%29212
- Towards a quantum computing algorithm for helicity amplitudes and parton showersBepari, K., Malik, S., Spannowsky, M., & Williams, S. (2021). Towards a quantum computing algorithm for helicity amplitudes and parton showers. Physical Review D, 103(7), Article 076020. https://doi.org/10.1103/physrevd.103.076020
- Classifying standard model extensions effectively with precision observablesDas Bakshi, S., Chakrabortty, J., & Spannowsky, M. (2021). Classifying standard model extensions effectively with precision observables. Physical Review D, 103(5), Article 056019. https://doi.org/10.1103/physrevd.103.056019
- Anomaly detection with convolutional Graph Neural NetworksAtkinson, O., Bhardwaj, A., Englert, C., Ngairangbam, V. S., & Spannowsky, M. (2021). Anomaly detection with convolutional Graph Neural Networks. Journal of High Energy Physics, 2021(8). https://doi.org/10.1007/jhep08%282021%29080
- Searching for QCD instantons at hadron collidersKhoze, V. V., Milne, D. L., & Spannowsky, M. (2021). Searching for QCD instantons at hadron colliders. Physical Review D, 103(1), Article 014017. https://doi.org/10.1103/physrevd.103.014017
- Extended Higgs boson sectors, effective field theory, and Higgs boson phenomenologyAnisha, Banerjee, U., Chakrabortty, J., Englert, C., & Spannowsky, M. (2021). Extended Higgs boson sectors, effective field theory, and Higgs boson phenomenology. Physical Review D, 103(9). https://doi.org/10.1103/physrevd.103.096009
- Higgs self-coupling measurements using deep learning in the bb¯¯bb¯¯ final stateAmacker, J., Balunas, W., Beresford, L., Bortoletto, D., Frost, J., Issever, C., Liu, J., McKee, J., Micheli, A., Saenz, S. P., Spannowsky, M., & Stanislaus, B. (2020). Higgs self-coupling measurements using deep learning in the bb¯¯bb¯¯ final state. Journal of High Energy Physics, 2020(12), Article 115. https://doi.org/10.1007/jhep12%282020%29115
- Di-Higgs resonance searches in weak boson fusionBarman, R. K., Englert, C., Gonçalves, D., & Spannowsky, M. (2020). Di-Higgs resonance searches in weak boson fusion. Physical Review D, 102(5), Article 055014. https://doi.org/10.1103/physrevd.102.055014
- The effective field theory of low scale see-saw at collidersBiekötter, A., Chala, M., & Spannowsky, M. (2020). The effective field theory of low scale see-saw at colliders. European Physical Journal C: Particles and Fields, 80(8), Article 743. https://doi.org/10.1140/epjc/s10052-020-8339-2
- Power meets Precision to explore the Symmetric Higgs PortalEnglert, C., Jaeckel, J., Spannowsky, M., & Stylianou, P. (2020). Power meets Precision to explore the Symmetric Higgs Portal. Physics Letters B, 806, Article 135526. https://doi.org/10.1016/j.physletb.2020.135526
- Mapping the shape of the scalar potential with gravitational wavesChala, M., Khoze, V. V., Spannowsky, M., & Waite, P. (2019). Mapping the shape of the scalar potential with gravitational waves. International Journal of Modern Physics A, 34(33), Article 1950223.
- Novel B-decay signatures of light scalars at high energy facilitiesBlance, A., Chala, M., Ramos, M., & Spannowsky, M. (2019). Novel B-decay signatures of light scalars at high energy facilities. Physical Review D, 100(11), Article 115015. https://doi.org/10.1103/physrevd.100.115015
- Resolving the tensor structure of the Higgs coupling to Z bosons via Higgs-strahlungBanerjee, S., Gupta, R. S., Reiness, J. Y., & Spannowsky, M. (2019). Resolving the tensor structure of the Higgs coupling to Z bosons via Higgs-strahlung. Physical Review D, 100(11), Article 115004. https://doi.org/10.1103/physrevd.100.115004
- Higgs phenomenology as a probe of sterile neutrinosButterworth, J. M., Chala, M., Englert, C., Spannowsky, M., & Titov, A. (2019). Higgs phenomenology as a probe of sterile neutrinos. Physical Review D, 100(11), Article 115019. https://doi.org/10.1103/physrevd.100.115019
- All-in-one relaxion: A unified solution to five particle-physics puzzlesGupta, R., Reiness, J., & Spannowsky, M. (2019). All-in-one relaxion: A unified solution to five particle-physics puzzles. Physical Review D, 100(5), Article 055003. https://doi.org/10.1103/physrevd.100.055003
- HYTREES: combining matrix elements and parton shower for hypothesis testingPrestel, S., & Spannowsky, M. (2019). HYTREES: combining matrix elements and parton shower for hypothesis testing. European Physical Journal C: Particles and Fields, 79(7), Article 546. https://doi.org/10.1140/epjc/s10052-019-7030-y
- Approaching robust EFT limits for CP violation in the Higgs sectorEnglert, C., Galler, P., Pilkington, A., & Spannowsky, M. (2019). Approaching robust EFT limits for CP violation in the Higgs sector. Physical Review D, 99(9), Article 095007. https://doi.org/10.1103/physrevd.99.095007
- Constraining four-fermion operators using rare top decaysChala, M., Santiago, J., & Spannowsky, M. (2019). Constraining four-fermion operators using rare top decays. Journal of High Energy Physics, 2019(4), Article 14. https://doi.org/10.1007/jhep04%282019%29014
- Consistency of Higgsplosion in localizable QFTKhoze, V. V., & Spannowsky, M. (2019). Consistency of Higgsplosion in localizable QFT. Physics Letters B, 790, 466-474. https://doi.org/10.1016/j.physletb.2019.01.052
- Gravitational wave and collider probes of a triplet Higgs sector with a low cutoffChala, M., Ramos, M., & Spannowsky, M. (2019). Gravitational wave and collider probes of a triplet Higgs sector with a low cutoff. European Physical Journal C: Particles and Fields, 79(2), Article 156. https://doi.org/10.1140/epjc/s10052-019-6655-1
- Angles on CP-violation in Higgs boson interactionsBernlochner, F. U., Englert, C., Hays, C., Lohwasser, K., Mildner, H., Pilkington, A., Price, D. D., & Spannowsky, M. (2019). Angles on CP-violation in Higgs boson interactions. Physics Letters B, 790, 372-379. https://doi.org/10.1016/j.physletb.2019.01.043
- Machine learning uncertainties with adversarial neural networksEnglert, C., Galler, P., Harris, P., & Spannowsky, M. (2019). Machine learning uncertainties with adversarial neural networks. European Physical Journal C: Particles and Fields, 79(1), Article 4. https://doi.org/10.1140/epjc/s10052-018-6511-8
- Adversarially-trained autoencoders for robust unsupervised new physics searchesBlance, A., Spannowsky, M., & Waite, P. (2019). Adversarially-trained autoencoders for robust unsupervised new physics searches. Journal of High Energy Physics, 2019(10), Article 047. https://doi.org/10.1007/jhep10%282019%29047
- Probing electroweak precision physics via boosted Higgs-strahlung at the LHCBanerjee, S., Englert, C., Gupta, R. S., & Spannowsky, M. (2018). Probing electroweak precision physics via boosted Higgs-strahlung at the LHC. Physical Review D, 98(9), Article 095012. https://doi.org/10.1103/physrevd.98.095012
- Searching for processes with invisible particles using a matrix element-based methodFerreira de Lima, D. E., Mattelaer, O., & Spannowsky, M. (2018). Searching for processes with invisible particles using a matrix element-based method. Physics Letters B, 787, 100-104. https://doi.org/10.1016/j.physletb.2018.10.044
- Particle physics with gravitational wave detector technologyEnglert, C., Hild, S., & Spannowsky, M. (2018). Particle physics with gravitational wave detector technology. Europhysics Letters, 123(4), Article 41001. https://doi.org/10.1209/0295-5075/123/41001
- Top quark FCNCs in extended Higgs sectorsBanerjee, S., Chala, M., & Spannowsky, M. (2018). Top quark FCNCs in extended Higgs sectors. European Physical Journal C: Particles and Fields, 78(8), Article 683. https://doi.org/10.1140/epjc/s10052-018-6150-0
- Searching for Leptoquarks at IceCube and the LHCDey, U. K., Kar, D., Mitra, M., Spannowsky, M., & Vincent, A. C. (2018). Searching for Leptoquarks at IceCube and the LHC. Physical Review D, 98(3), Article 035014. https://doi.org/10.1103/physrevd.98.035014
- Probing the type-II seesaw mechanism through the production of Higgs bosons at a lepton colliderAgrawal, P., Mitra, M., Niyogi, S., Shil, S., & Spannowsky, M. (2018). Probing the type-II seesaw mechanism through the production of Higgs bosons at a lepton collider. Physical Review D, 98(1), Article 015024. https://doi.org/10.1103/physrevd.98.015024
- hh+Jet production at 100 TeVBanerjee, S., Englert, C., Mangano, M. L., Selvaggi, M., & Spannowsky, M. (2018). hh+Jet production at 100 TeV. European Physical Journal C: Particles and Fields, 78(4), Article 322. https://doi.org/10.1140/epjc/s10052-018-5788-y
- Double-charming Higgs boson identification using machine-learning assisted jet shapesLenz, A., Spannowsky, M., & Tetlalmatzi-Xolocotzi, G. (2018). Double-charming Higgs boson identification using machine-learning assisted jet shapes. Physical Review D, 97(1), Article 016001. https://doi.org/10.1103/physrevd.97.016001
- Higgsplosion: Solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosonsKhoze, V. V., & Spannowsky, M. (2018). Higgsplosion: Solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons. Nuclear Physics B, 926, 95-111. https://doi.org/10.1016/j.nuclphysb.2017.11.002
- Jet-associated resonance spectroscopyEnglert, C., Ferretti, G., & Spannowsky, M. (2017). Jet-associated resonance spectroscopy. European Physical Journal C: Particles and Fields, 77(12), Article 842. https://doi.org/10.1140/epjc/s10052-017-5416-2
- Maxi-sizing the trilinear Higgs self-coupling: how large could it be?Di Luzio, L., Gröber, R., & Spannowsky, M. (2017). Maxi-sizing the trilinear Higgs self-coupling: how large could it be?. European Physical Journal C: Particles and Fields, 77, Article 788. https://doi.org/10.1140/epjc/s10052-017-5361-0
- Higgs characterisation in the presence of theoretical uncertainties and invisible decaysEnglert, C., Kogler, R., Schulz, H., & Spannowsky, M. (2017). Higgs characterisation in the presence of theoretical uncertainties and invisible decays. European Physical Journal C: Particles and Fields, 77(11), Article 789. https://doi.org/10.1140/epjc/s10052-017-5366-8
- Higgsploding universeKhoze, V. V., & Spannowsky, M. (2017). Higgsploding universe. Physical Review D, 96(7), Article 075042. https://doi.org/10.1103/physrevd.96.075042
- Heavy neutrinos from gluon fusionRuiz, R., Spannowsky, M., & Waite, P. (2017). Heavy neutrinos from gluon fusion. Physical Review D, 96(5), Article 055042. https://doi.org/10.1103/physrevd.96.055042
- Resonant di-Higgs boson production in the bb¯WW Channel: Probing the electroweak phase transition at the LHCHuang, T., No, J., Pernié, L., Ramsey-Musolf, M., Safonov, A., Spannowsky, M., & Winslow, P. (2017). Resonant di-Higgs boson production in the bb¯WW Channel: Probing the electroweak phase transition at the LHC. Physical Review D, 96(3), Article 035007. https://doi.org/10.1103/physrevd.96.035007
- VBS W±W±H production at the HL-LHC and a 100 TeV pp-colliderEnglert, C., Li, Q., Spannowsky, M., Wang, M., & Wang, L. (2017). VBS W±W±H production at the HL-LHC and a 100 TeV pp-collider. International Journal of Modern Physics A, 32(18), Article 1750106. https://doi.org/10.1142/s0217751x17501068
- Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interactionKribs, G. D., Maier, A., Rzehak, H., Spannowsky, M., & Waite, P. (2017). Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction. Physical Review D, 95(9), Article 093004. https://doi.org/10.1103/physrevd.95.093004
- Prospects for new physics in τ→lμμ at current and future collidersHays, C., Mitra, M., Spannowsky, M., & Waite, P. (2017). Prospects for new physics in τ→lμμ at current and future colliders. Journal of High Energy Physics, 2017(5), Article 014. https://doi.org/10.1007/jhep05%282017%29014
- Boost to h→Zγ: from LHC to future e+e− collidersNo, J. M., & Spannowsky, M. (2017). Boost to h→Zγ: from LHC to future e+e− colliders. Physical Review D, 95(1), Article 075027. https://doi.org/10.1103/physrevd.95.075027
- Same-sign W pair production in composite Higgs modelsEnglert, C., Schichtel, P., & Spannowsky, M. (2017). Same-sign W pair production in composite Higgs models. Physical Review D, 95(5), Article 055002. https://doi.org/10.1103/physrevd.95.055002
- Type-II Seesaw Model and Multilepton Signatures at Hadron CollidersMitra, M., Niyogi, S., & Spannowsky, M. (2017). Type-II Seesaw Model and Multilepton Signatures at Hadron Colliders. Physical Review D, 95(3), Article 035042. https://doi.org/10.1103/physrevd.95.035042
- Measurement of W boson angular distributions in events with high transverse momentum jets at s√= 8 TeV using the ATLAS detectorAaboud, M., Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Abeloos, B., Aben, R., AbouZeid, O., Abraham, N., Abramowicz, H., Abreu, H., Abreu, R., Abulaiti, Y., Acharya, B., Adachi, S., Adamczyk, L., Adams, D., Adelman, J., Adomeit, S., … Bort. (2017). Measurement of W boson angular distributions in events with high transverse momentum jets at s√= 8 TeV using the ATLAS detector. Physics Letters B, 765, 132-153. https://doi.org/10.1016/j.physletb.2016.12.005
- Invisible decays in Higgs boson pair productionBanerjee, S., Batell, B., & Spannowsky, M. (2017). Invisible decays in Higgs boson pair production. Physical Review D, 95(3), Article 035009. https://doi.org/10.1103/physrevd.95.035009
- Quark-gluon tagging with shower deconstruction: Unearthing dark matter and Higgs couplingsFerreira de Lima, D., Petrov, P., Soper, D., & Spannowsky, M. (2017). Quark-gluon tagging with shower deconstruction: Unearthing dark matter and Higgs couplings. Physical Review D, 95(3), Article 034001. https://doi.org/10.1103/physrevd.95.034001
- Perturbative Higgs coupling CP violation, unitarity, and phenomenologyEnglert, C., Nordström, K., Sakurai, K., & Spannowsky, M. (2017). Perturbative Higgs coupling CP violation, unitarity, and phenomenology. Physical Review D, 95(1), Article 015018. https://doi.org/10.1103/physrevd.95.015018
- Sphalerons in composite and non-standard Higgs modelsSpannowsky, M., & Tamarit, C. (2017). Sphalerons in composite and non-standard Higgs models. Physical Review D, 95(1), Article 015006. https://doi.org/10.1103/physrevd.95.015006
- A facility to search for hidden particles at the CERN SPS: the SHiP physics case.Altmannshofer, W., Asaka, T., Batell, B., Bezrukov, F., Bondarenko, K., Boyarsky, A., Choi, K.-Y., Corral, C., Craig, N., Curtin, D., Davidson, S., de Gouvêa, A., Dell’Oro, S., deNiverville, P., Bhupal Dev, P., Dreiner, H., Drewes, M., Eijima, S., Essig, R., … Zurek, K. M. (2016). A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Reports on Progress in Physics, 79(12), Article 124201. https://doi.org/10.1088/0034-4885/79/12/124201
- S-Channel Dark Matter Simplified Models and UnitarityEnglert, C., McCullough, M., & Spannowsky, M. (2016). S-Channel Dark Matter Simplified Models and Unitarity. Physics of the Dark Universe, 14, 48-56. https://doi.org/10.1016/j.dark.2016.09.002
- Hearing the signal of dark sectors with gravitational wave detectorsJaeckel, J., Khoze, V. V., & Spannowsky, M. (2016). Hearing the signal of dark sectors with gravitational wave detectors. Physical Review D, 94(10), Article 103519. https://doi.org/10.1103/physrevd.94.103519
- Jet activity as a probe of diphoton resonance productionHarland-Lang, L., Khoze, V., Ryskin, M., & Spannowsky, M. (2016). Jet activity as a probe of diphoton resonance production. European Physical Journal C: Particles and Fields, 76, Article 623. https://doi.org/10.1140/epjc/s10052-016-4471-4
- Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric modelsMitra, M., Ruiz, R., Scott, D. J., & Spannowsky, M. (2016). Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models. Physical Review D, 94(9), Article 095016. https://doi.org/10.1103/physrevd.94.095016
- LHC Signatures Of Scalar Dark EnergyBrax, P., Burrage, C., Englert, C., & Spannowsky, M. (2016). LHC Signatures Of Scalar Dark Energy. Physical Review D, 94(8), Article 084054. https://doi.org/10.1103/physrevd.94.084054
- Cosmic ray air showers from sphaleronsBrooijmans, G., Schichtel, P., & Spannowsky, M. (2016). Cosmic ray air showers from sphalerons. Physics Letters B, 761, 213-218. https://doi.org/10.1016/j.physletb.2016.08.030
- Towards resolving strongly-interacting dark sectors at collidersEnglert, C., Nordström, K., & Spannowsky, M. (2016). Towards resolving strongly-interacting dark sectors at colliders. Physical Review D, 94(5), Article 055028. https://doi.org/10.1103/physrevd.94.055028
- Measuring rare and exclusive Higgs boson decays into light resonancesChisholm, A. S., Kuttimalai, S., Nikolopoulos, K., & Spannowsky, M. (2016). Measuring rare and exclusive Higgs boson decays into light resonances. European Physical Journal C: Particles and Fields, 76(9), Article 501. https://doi.org/10.1140/epjc/s10052-016-4345-9
- Searching for supersymmetry scalelesslySchlaffer, M., Spannowsky, M., & Weiler, A. (2016). Searching for supersymmetry scalelessly. European Physical Journal C: Particles and Fields, 76(8), Article 457. https://doi.org/10.1140/epjc/s10052-016-4299-y
- Cornering diphoton resonance models at the LHCBacković, M., Kulkarni, S., Mariotti, A., Sessolo, E. M., & Spannowsky, M. (2016). Cornering diphoton resonance models at the LHC. Journal of High Energy Physics, 2016(08), Article 018. https://doi.org/10.1007/jhep08%282016%29018
- Determining the quantum numbers of simplified models in tt¯X production at the LHCDolan, M. J., Spannowsky, M., Wang, Q., & Yu, Z.-H. (2016). Determining the quantum numbers of simplified models in tt¯X production at the LHC. Physical Review D, 94(1), Article 015025. https://doi.org/10.1103/physrevd.94.015025
- Higgs coupling measurements at the LHCEnglert, C., Kogler, R., Schulz, H., & Spannowsky, M. (2016). Higgs coupling measurements at the LHC. European Physical Journal C: Particles and Fields, 76(7), Article 393. https://doi.org/10.1140/epjc/s10052-016-4227-1
- The Lepton Flavour Violating Higgs Decays at the HL-LHC and the ILCBanerjee, S., Bhattacherjee, B., Mitra, M., & Spannowsky, M. (2016). The Lepton Flavour Violating Higgs Decays at the HL-LHC and the ILC. Journal of High Energy Physics, 2016(07), Article 059. https://doi.org/10.1007/jhep07%282016%29059
- Identification of high transverse momentum top quarks in pp collisions at s√=8s=8 TeV with the ATLAS detectorSpannowsky, M., & collaboration, A. (2016). Identification of high transverse momentum top quarks in pp collisions at s√=8s=8 TeV with the ATLAS detector. Journal of High Energy Physics, 2016(06), Article 093. https://doi.org/10.1007/jhep06%282016%29093
- Search for Sphalerons: IceCube vs. LHCEllis, J., Sakurai, K., & Spannowsky, M. (2016). Search for Sphalerons: IceCube vs. LHC. Journal of High Energy Physics, 2016(05), Article 085. https://doi.org/10.1007/jhep05%282016%29085
- Measuring the Higgs-bottom coupling in weak boson fusionEnglert, C., Mattelaer, O., & Spannowsky, M. (2016). Measuring the Higgs-bottom coupling in weak boson fusion. Physics Letters B, 756, 103-108. https://doi.org/10.1016/j.physletb.2016.02.074
- New physics and signal-background interference in associated pp → HZ productionEnglert, C., Rosenfeld, R., Spannowsky, M., & Tonero, A. (2016). New physics and signal-background interference in associated pp → HZ production. Europhysics Letters, 114(3), Article 31001. https://doi.org/10.1209/0295-5075/114/31001
- Closing up on Dark Sectors at colliders: from 14 to 100 TeVHarris, P., Khoze, V. V., Spannowsky, M., & Williams, C. (2016). Closing up on Dark Sectors at colliders: from 14 to 100 TeV. Physical Review D, 93(5), Article 054030. https://doi.org/10.1103/physrevd.93.054030
- Probing MeV to 90 GeV axion-like particles with LEP and LHCJaeckel, J., & Spannowsky, M. (2016). Probing MeV to 90 GeV axion-like particles with LEP and LHC. Physics Letters B, 753, 482-487. https://doi.org/10.1016/j.physletb.2015.12.037
- Measuring the signal strength in tt¯HwithH→bb¯Moretti, N., Petrov, P., Pozzorini, S., & Spannowsky, M. (2016). Measuring the signal strength in tt¯HwithH→bb¯. Physical Review D, 93(1), Article 014019. https://doi.org/10.1103/physrevd.93.014019
- Combining LEP and LHC to bound the Higgs WidthEnglert, C., McCullough, M., & Spannowsky, M. (2016). Combining LEP and LHC to bound the Higgs Width. Nuclear Physics B, 902, 440-457. https://doi.org/10.1016/j.nuclphysb.2015.11.017
- Probing a light CP-odd scalar in di-top-associated production at the LHCCasolino, M., Farooque, T., Juste, A., Liu, T., & Spannowsky, M. (2015). Probing a light CP-odd scalar in di-top-associated production at the LHC. European Physical Journal C: Particles and Fields, 75, Article 498. https://doi.org/10.1140/epjc/s10052-015-3708-y
- Spectroscopy of scalar mediators to dark matter at the LHC and at 100 TeVKhoze, V. V., Ro, G., & Spannowsky, M. (2015). Spectroscopy of scalar mediators to dark matter at the LHC and at 100 TeV. Physical Review D, 92(7), Article 075006. https://doi.org/10.1103/physrevd.92.075006
- Augmenting the diboson excess for the LHC Run IIGonçalves, D., Krauss, F., & Spannowsky, M. (2015). Augmenting the diboson excess for the LHC Run II. Physical Review D, 92(5). https://doi.org/10.1103/physrevd.92.053010
- Towards an Understanding of the Correlations in Jet SubstructureAdams, D., Arce, A., Asquith, L., Backovic, M., Barillari, T., Berta, P., Bertolini, D., Buckley, A., Butterworth, J., Camacho Toro, R., Caudron, J., Chien, Y.-T., Cogan, J., Cooper, B., Curtin, D., Debenedetti, C., Dolen, J., Eklund, M., El Hedri, S., … Young, C. (2015). Towards an Understanding of the Correlations in Jet Substructure. European Physical Journal C: Particles and Fields, 75(9), Article 409. https://doi.org/10.1140/epjc/s10052-015-3587-2
- Unitarity-controlled resonances after the Higgs boson discoveryEnglert, C., Harris, P., Spannowsky, M., & Takeuchi, M. (2015). Unitarity-controlled resonances after the Higgs boson discovery. Physical Review D, 92(1), Article 013003. https://doi.org/10.1103/physrevd.92.013003
- Signs of Tops from Highly Mixed StopsBacković, M., Mariotti, A., & Spannowsky, M. (2015). Signs of Tops from Highly Mixed Stops. Journal of High Energy Physics, 2015(06), Article 122. https://doi.org/10.1007/jhep06%282015%29122
- Off-Shell Higgs Coupling Measurements in BSM scenariosEnglert, C., Soteq, Y., & Spannowsky, M. (2015). Off-Shell Higgs Coupling Measurements in BSM scenarios. Journal of High Energy Physics, 2015(05), Article 145. https://doi.org/10.1007/jhep05%282015%29145
- On-shell interference effects in Higgs boson final statesEnglert, C., Low, I., & Spannowsky, M. (2015). On-shell interference effects in Higgs boson final states. Physical Review D, 91(7), Article 074029. https://doi.org/10.1103/physrevd.91.074029
- Di-Higgs phenomenology in t¯thh: The forgotten channelEnglert, C., Krauss, F., Spannowsky, M., & Thompson, J. (2015). Di-Higgs phenomenology in t¯thh: The forgotten channel. Physics Letters B, 743, 93-97. https://doi.org/10.1016/j.physletb.2015.02.041
- Constraining Dark Sectors at Colliders: Beyond the Effective Theory ApproachHarris, P., Khoze, V. V., Spannowsky, M., & Williams, C. (2015). Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach. Physical Review D, 91(5). https://doi.org/10.1103/physrevd.91.055009
- Higgs Self-Coupling Measurements at a 100 TeV Hadron ColliderBarr, A. J., Dolan, M. J., Englert, C., Ferreira de Lima, D. E., & Spannowsky, M. (2015). Higgs Self-Coupling Measurements at a 100 TeV Hadron Collider. Journal of High Energy Physics, 2015(02), Article 016. https://doi.org/10.1007/jhep02%282015%29016
- Effective Theories and Measurements at CollidersEnglert, C., & Spannowsky, M. (2015). Effective Theories and Measurements at Colliders. Physics Letters B, 740, 8-15. https://doi.org/10.1016/j.physletb.2014.11.035
- Searching for a Heavy Higgs boson in a Higgs-portal B-L ModelBanerjee, S., Mitra, M., & Spannowsky, M. (2015). Searching for a Heavy Higgs boson in a Higgs-portal B-L Model. Physical Review D - Particles, Fields, Gravitation and Cosmology, D92(5). https://doi.org/10.1103/physrevd.92.055013
- Tracking New Physics at the LHC and beyondSpannowsky, M., & Stoll, M. (2015). Tracking New Physics at the LHC and beyond. Physical Review D - Particles, Fields, Gravitation and Cosmology, D92(5). https://doi.org/10.1103/physrevd.92.054033
- hhjj production at the LHCDolan, M. J., Englert, C., Greiner, N., Nordstrom, K., & Spannowsky, M. (2015). hhjj production at the LHC. European Physical Journal C: Particles and Fields, 75(8), Article 387. https://doi.org/10.1140/epjc/s10052-015-3622-3
- Scattering of Dark Particles with Light MediatorsSoper, D. E., Spannowsky, M., Wallace, C., & Tait, T. M. (2014). Scattering of Dark Particles with Light Mediators. Physical Review D, 90(11), Article 115005. https://doi.org/10.1103/physrevd.90.115005
- Boosted Higgs ShapesSchlaffer, M., Spannowsky, M., Takeuchi, M., Weiler, A., & Wymant, C. (2014). Boosted Higgs Shapes. European Physical Journal C: Particles and Fields, 74(10). https://doi.org/10.1140/epjc/s10052-014-3120-z
- Constraining CP-violating Higgs sectors at the LHC using gluon fusionDolan, M. J., Harris, P., Jankowiak, M., & Spannowsky, M. (2014). Constraining CP-violating Higgs sectors at the LHC using gluon fusion. Physical Review D, 90(7), Article 073008. https://doi.org/10.1103/physrevd.90.073008
- Reconstructing singly produced top partners in decays to WbGutierrez Ortiz, N., Ferrando, J., Kar, D., & Spannowsky, M. (2014). Reconstructing singly produced top partners in decays to Wb. Physical Review D, 90(7), Article 075009. https://doi.org/10.1103/physrevd.90.075009
- Limitations and opportunities of off-shell coupling measurementsEnglert, C., & Spannowsky, M. (2014). Limitations and opportunities of off-shell coupling measurements. Physical Review D, 90(5), Article 053003. https://doi.org/10.1103/physrevd.90.053003
- Standard model Higgs boson pair production in the ( bb¯ )( bb¯ ) final stateFerreira de Lima, D., Papaefstathiou, A., & Spannowsky, M. (2014). Standard model Higgs boson pair production in the ( bb¯ )( bb¯ ) final state. Journal of High Energy Physics, 2014(8), Article 030. https://doi.org/10.1007/jhep08%282014%29030
- Resolving the Higgs-gluon coupling with jetsBuschmann, M., Englert, C., Goncalvec, D., Plehn, T., & Spannowsky, M. (2014). Resolving the Higgs-gluon coupling with jets. Physical Review D, 90(1), Article 013010. https://doi.org/10.1103/physrevd.90.013010
- Dark Sector spectroscopy at the ILCAndersen, J. R., Rauch, M., & Spannowsky, M. (2014). Dark Sector spectroscopy at the ILC. European Physical Journal C: Particles and Fields, 74(6), Article 2908. https://doi.org/10.1140/epjc/s10052-014-2908-1
- Measuring collinear W emissions inside jetsKrauss, F., Petrov, P., Schönherr, M., & Spannowsky, M. (2014). Measuring collinear W emissions inside jets. Physical Review D, 89(11), Article 114006. https://doi.org/10.1103/physrevd.89.114006
- Finding physics signals with event deconstructionSoper, D. E., & Spannowsky, M. (2014). Finding physics signals with event deconstruction. Physical Review D, 89(9), Article 094005. https://doi.org/10.1103/physrevd.89.094005
- Extended gamma-ray emission from Coy Dark MatterBœhm, C., Dolan, M. J., McCabe, C., & Spannowsky, M. (2014). Extended gamma-ray emission from Coy Dark Matter. Journal of Cosmology and Astroparticle Physics, 2014(05), Article 009. https://doi.org/10.1088/1475-7516/2014/05/009
- Nonstandard top substructureEnglert, C., Gonçalves, D., & Spannowsky, M. (2014). Nonstandard top substructure. Physical Review D, 89(7), Article 074038. https://doi.org/10.1103/physrevd.89.074038
- Boosting Top Partner Searches in Composite Higgs ModelsAzatov, A., Salvarezza, M., Son, M., & Spannowsky, M. (2014). Boosting Top Partner Searches in Composite Higgs Models. Physical Review D, 89(7), Article 075001. https://doi.org/10.1103/physrevd.89.075001
- Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012Altheimer, A., Arce, A., Asquith, L., Spannowsky, M., & et al. (2014). Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012. European Physical Journal C: Particles and Fields, 74(3), Article 2792. https://doi.org/10.1140/epjc/s10052-014-2792-8
- Production of hhjj at the LHCDolan, M. J., Englert, C., Greiner, N., & Spannowsky, M. (2014). Production of hhjj at the LHC. Physical Review Letters, 112(10), Article 101802. https://doi.org/10.1103/physrevlett.112.101802
- Gluon-initiated associated production boosts Higgs physicsEnglert, C., McCullough, M., & Spannowsky, M. (2014). Gluon-initiated associated production boosts Higgs physics. Physical Review D, 89(1), Article 013013. https://doi.org/10.1103/physrevd.89.013013
- Di-Higgs final states augMT2ed – Selecting hh events at the high luminosity LHCBarr, A. J., Dolan, M. J., Englert, C., & Spannowsky, M. (2014). Di-Higgs final states augMT2ed – Selecting hh events at the high luminosity LHC. Physics Letters B, 728, 308-313. https://doi.org/10.1016/j.physletb.2013.12.011
- Tagging highly boosted top quarksSchätzel, S., & Spannowsky, M. (2014). Tagging highly boosted top quarks. Physical Review D, 89(1), Article 014007. https://doi.org/10.1103/physrevd.89.014007
- LHC probes the hidden sectorJaeckel, J., Jankowiak, M., & Spannowsky, M. (2013). LHC probes the hidden sector. Physics of the Dark Universe, 2(3), 111-117. https://doi.org/10.1016/j.dark.2013.06.001
- Pinning down Higgs triplets at the LHCEnglert, C., Re, E., & Spannowsky, M. (2013). Pinning down Higgs triplets at the LHC. Physical Review D, 88(3), Article 035024. https://doi.org/10.1103/physrevd.88.035024
- The shape of spinsEnglert, C., Gonçalves, D., Nail, G., & Spannowsky, M. (2013). The shape of spins. Physical Review D, 88(1), Article 013016. https://doi.org/10.1103/physrevd.88.013016
- Triplet Higgs boson collider phenomenology after the LHCEnglert, C., Re, E., & Spannowsky, M. (2013). Triplet Higgs boson collider phenomenology after the LHC. Physical Review D, 87(9), Article 095014. https://doi.org/10.1103/physrevd.87.095014
- Emergence of the electroweak scale through the Higgs portalEnglert, C., Jaeckel, J., Khoze, V., & Spannowsky, M. (2013). Emergence of the electroweak scale through the Higgs portal. Journal of High Energy Physics, 2013(4), Article 60. https://doi.org/10.1007/jhep04%282013%29060
- Making the most of missing transverse energy: Mass reconstruction from collimated decaysSpannowsky, M., & Wymant, C. (2013). Making the most of missing transverse energy: Mass reconstruction from collimated decays. Physical Review D, 87(7), Article 074004. https://doi.org/10.1103/physrevd.87.074004
- Finding top quarks with shower deconstructionSoper, D. E., & Spannowsky, M. (2013). Finding top quarks with shower deconstruction. Physical Review D, 87(5), Article 054012. https://doi.org/10.1103/physrevd.87.054012
- New Physics in LHC Higgs boson pair productionDolan, M. J., Englert, C., & Spannowsky, M. (2013). New Physics in LHC Higgs boson pair production. Physical Review D, 87(5), Article 055002. https://doi.org/10.1103/physrevd.87.055002
- Extracting precise Higgs couplings by using the matrix element methodAndersen, J., Englert, C., & Spannowsky, M. (2013). Extracting precise Higgs couplings by using the matrix element method. Physical Review D, 87(1), Article 015019. https://doi.org/10.1103/physrevd.87.015019
- Partially (in)visible Higgs decays at the LHC.Englert, C., Spannowsky, M., & Wymant, C. (2012). Partially (in)visible Higgs decays at the LHC. Physics Letters B, 718(2), 538-544. https://doi.org/10.1016/j.physletb.2012.11.008
- Higgs self-coupling measurements at the LHC.Dolan, M. J., Englert, C., & Spannowsky, M. (2012). Higgs self-coupling measurements at the LHC. Journal of High Energy Physics, 2012(10), Article 112. https://doi.org/10.1007/jhep10%282012%29112
- Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarksal, A. et, & Spannowsky, M. (2012). Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks. Journal of Physics G: Nuclear and Particle Physics, 39(6), Article 063001. https://doi.org/10.1088/0954-3899/39/6/063001
- Evasive Higgs Boson Maneuvers at the LHCEnglert, C., Jaeckel, J., Re, E., & Spannowsky, M. (2012). Evasive Higgs Boson Maneuvers at the LHC. Physical Review D, Particles and Fields, 85(3), Article 035008. https://doi.org/10.1103/physrevd.85.035008
- How to Improve Top TaggingPlehn, T., Spannowsky, M., & Takeuchi, M. (2012). How to Improve Top Tagging. Physical Review D, 85(3). https://doi.org/10.1103/physrevd.85.034029
- Stop searches in 2012Plehn, T., Spannowsky, M., & Takeuchi, M. (2012). Stop searches in 2012. Journal of High Energy Physics, 2012(8). https://doi.org/10.1007/jhep08%282012%29091
- Enhanced Gamma Ray Signals in Cosmic Proton-Wimp Collisions Due to HadronizationChang, S., Gao, Y., & Spannowsky, M. (2012). Enhanced Gamma Ray Signals in Cosmic Proton-Wimp Collisions Due to Hadronization. Journal of Cosmology and Astroparticle Physics, 2012(11). https://doi.org/10.1088/1475-7516/2012/11/053
- Unconstraining the UnhiggsEnglert, C., Spannowsky, M., Stancato, D., & Terning, J. (2012). Unconstraining the Unhiggs. Physical Review D, 85(9). https://doi.org/10.1103/physrevd.85.095003
- On jet mass distributions in Z+jet and dijet processes at the LHCDasgupta, M., Khelifa-Kerfa, K., Marzani, S., & Spannowsky, M. (2012). On jet mass distributions in Z+jet and dijet processes at the LHC. Journal of High Energy Physics, 2012(10). https://doi.org/10.1007/jhep10%282012%29126
- Measuring Higgs CP and couplings with hadronic event shapesEnglert, C., Spannowsky, M., & Takeuchi, M. (2012). Measuring Higgs CP and couplings with hadronic event shapes. Journal of High Energy Physics, 2012(6). https://doi.org/10.1007/jhep06%282012%29108
- The dependency of boosted tagging algorithms on the event colour structureJoshi, K., Pilkington, A. D., & Spannowsky, M. (2012). The dependency of boosted tagging algorithms on the event colour structure. Physical Review D, 86(11). https://doi.org/10.1103/physrevd.86.114016
- Constraining the Unhiggs with LHC dataEnglert, C., Goncalvec Netto, D., Spannowsky, M., & Terning, J. (2012). Constraining the Unhiggs with LHC data. Physical Review D, 86(3). https://doi.org/10.1103/physrevd.86.035010
- AtFB meets LHCHewett, J. L., Shelton, J., Spannowsky, M., Tait, T. M., & Takeuchi, M. (2011). AtFB meets LHC. Physical Review D - Particles, Fields, Gravitation and Cosmology, 84(5), Article 054005. https://doi.org/10.1103/physrevd.84.054005
- Finding physics signals with shower deconstruction.Soper, D., & Spannowsky, M. (2011). Finding physics signals with shower deconstruction. Physical Review D - Particles, Fields, Gravitation and Cosmology, 84(7), Article 074002. https://doi.org/10.1103/physrevd.84.074002
- Discovering the Higgs Boson in New Physics Events using Jet SubstructureKribs, G. D., Martin, A., Roy, T. S., & Spannowsky, M. (2010). Discovering the Higgs Boson in New Physics Events using Jet Substructure. Physical Review D - Particles, Fields, Gravitation and Cosmology, 81(11), Article 111501. https://doi.org/10.1103/physrevd.81.111501
- Fat Jets for a Light Higgs BosonPlehn, T., Salam, G. P., & Spannowsky, M. (2010). Fat Jets for a Light Higgs Boson. Physical Review Letters, 104(11), Article 111801. https://doi.org/10.1103/physrevlett.104.111801
- Stop Reconstruction with Tagged TopsPlehn, T., Spannowsky, M., Takeuchi, M., & Zerwas, D. (2010). Stop Reconstruction with Tagged Tops. Journal of High Energy Physics, 2010(10), Article 078. https://doi.org/10.1007/jhep10%282010%29078
- Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studiesContino, R., & Spannowsky, M. (n.d.). Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies. Advance online publication.
- Precision measurements for the Higgsploding Standard ModelKhoze, V. V., Reiness, J., Spannowsky, M., & Waite, P. (n.d.). Precision measurements for the Higgsploding Standard Model. Advance online publication.
- Physics at a 100 TeV pp collider: beyond the Standard Model phenomenaGolling, T., Spannowsky, M., & Khoze, V. (n.d.). Physics at a 100 TeV pp collider: beyond the Standard Model phenomena. Advance online publication.
Report
- Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sectorde Florian, D., Grojean, C., Maltoni, F., Spannowsky, M., & et al. (2017). Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. https://doi.org/10.23731/cyrm-2017-002
Supervision students
Despoina Dimakou
PGR Student
Puya Mirkarimi
PGR Student