Staff profile
Overview
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Mathematical Sciences |
Research interests
- probability and stochastic processes
- phase transitions
- interacting particle systems
- large deviations
Publications
Chapter in book
Conference Paper
Journal Article
- Chernousova, E., Hryniv, O., & Molchanov, S. (2023). Branching random walk in a random time-independent environment. Mathematical Population Studies, 30(2), 73-94. https://doi.org/10.1080/08898480.2022.2140561
- Chernousova, E., Feng, Y., Hryniv, O., Molchanov, S., & Whitmeyer, J. (2021). Steady states of lattice population models with immigration. Mathematical Population Studies, 28(2), 63-80. https://doi.org/10.1080/08898480.2020.1767411
- Chernousova, E., Hryniv, O., & Molchanov, S. (2020). Population model with immigration in continuous space. Mathematical Population Studies, 27(4), 199-215. https://doi.org/10.1080/08898480.2019.1626189
- Hryniv, O., & Martínez Esteban, A. (2017). Stochastic Model of Microtubule Dynamics. Journal of Statistical Physics, 169(1), 203-222. https://doi.org/10.1007/s10955-017-1855-2
- Hryniv, O., Menshikov, M. V., & Wade, A. R. (2013). Random walk in mixed random environment without uniform ellipticity. Proceedings of the Steklov Institute of Mathematics, 282(1), 106-123. https://doi.org/10.1134/s0081543813060102
- Hryniv, O., Menshikov, M. V., & Wade, A. R. (2013). Excursions and path functionals for stochastic processes with asymptotically zero drifts. Stochastic Processes and their Applications, 123(6), 1891-1921. https://doi.org/10.1016/j.spa.2013.02.001
- Hryniv, O., MacPhee, I. M., Menshikov, M. V., & Wade, A. R. (2012). Non-homogeneous random walks with non-integrable increments and heavy-tailed random walks on strips. Electronic Journal of Probability, 17, Article 59. https://doi.org/10.1214/ejp.v17-2216
- Hryniv, O. (2012). Regular phase in a model of microtubule growth. Markov processes and related fields, 18(2), 177-200
- Hryniv, O., & Menshikov, M. (2010). Long-time behaviour in a model of microtubule growth. Advances in Applied Probability, 42(1), 268-291. https://doi.org/10.1239/aap/1269611153
- Hryniv, O., & Velenik, Y. (2009). Some rigorous results on semiflexible polymers, I: Free and confined polymers. Stochastic Processes and their Applications, 119(10), 3081-3100. https://doi.org/10.1016/j.spa.2009.04.002
- Cranston, M., Hryniv, O., & Molchanov, S. (2009). Homo- and Hetero-Polymers in the Mean-Field Approximation. Markov processes and related fields, 15(2), 205-224
- Bovier, A., Cerny, J., & Hryniv, O. (2006). The Opinion Game: Stock price evolution from microscopic market modelling. International Journal of Theoretical and Applied Finance, 9(1), 91--111
- Hryniv, O., & Velenik, Y. (2004). Universality of critical behaviour in a class of recurrent random walks. Probability Theory and Related Fields, 130(2), 222-258. https://doi.org/10.1007/s00440-004-0353-z
- Hryniv, O., & Ioffe, D. (2004). Self-avoiding polygons: sharp asymptotics of canonical partition functions under the fixed area constraint. Markov processes and related fields, 10(1), 1-64
- Hryniv, O., & Kotecký, R. (2002). Surface tension and the Ornstein-Zernike behaviour for the 2D Blume-Capel model. Journal of Statistical Physics, 106(3-4), 431-476. https://doi.org/10.1023/a%3A1013797920029
- Ben Arous, G., Hryniv, O., & Molchanov, S. (2002). Phase transition for the spherical hierarchical model. Markov processes and related fields, 8(4), 565-594
- Hryniv, O. (1998). On conditional invariance principle for random walks. Математичні студії. Matematičnì studìï, 9(1), 102-109, 112
- Hryniv, O. (1998). On local behaviour of the phase separation line in the 2D Ising model. Probability Theory and Related Fields, 110(1), 91-107. https://doi.org/10.1007/s004400050146
- Dobrushin, R., & Hryniv, O. (1997). Fluctuations of the phase boundary in the 2D Ising ferromagnet. Communications in Mathematical Physics, 189(2), 395-445. https://doi.org/10.1007/s002200050209
- Dobrushin, R., & Hryniv, O. (1996). Fluctuations of shapes of large areas under paths of random walks. Probability Theory and Related Fields, 105(4), 423-458. https://doi.org/10.1007/bf01191908
- Hryniv, O., & Dobrushin, R. (1995). On fluctuations of the Wulff shape in the two-dimensional Ising model. Uspehi matematičeskih nauk Успехи математических наук (Online), 50(6(306)), 177-178
- Hryniv, O. (1991). A central limit theorem for the Burgers equation. Теоретическая и математическая физика. Teoretičeskaâ i matematičeskaâ fizika, 88(1), 7-13