Staff profile
Overview
https://internal.durham.ac.uk/images/mathematical.sciences/Maths_Staff_2018/Tumarkin.jpeg
Pavel Tumarkin
Professor, Geometry
PhD Moscow State University

Affiliation | Room number | Telephone |
---|---|---|
Professor, Geometry in the Department of Mathematical Sciences | MCS3009 | +44 (0) 191 33 43085 |
Research interests
- Coxeter groups
- Hyperbolic geometry
- Cluster algebras
Research groups
- Pure Mathematics: Geometry
Publications
Journal Article
- Felikson, A. & Tumarkin, P. (Accepted). Cluster algebras of finite mutation type with coefficients. Journal of Combinatorial Algebra
- Duffield, D. D. & Tumarkin, P. (Submitted). Categorifications of non-integer quivers: types H_4, H_3 and I_2(2n + 1). arXiv:2204.12752
- Felikson, A. & Tumarkin, P. (2023). Mutation-finite quivers with real weights. Forum of Mathematics, Sigma 11: e9.
- Canakci, I. Garcia Elsener, A., Felikson, A. & Tumarkin, P. (2022). Friezes for a pair of pants. Séminaire Lotharingien de Combinatoire 86B: 32.
- Felikson, A., Lawson, J.W., Shapiro, M. & Tumarkin, P. (2021). Cluster algebras from surfaces and extended affine Weyl groups. Transformation Groups 26(2): 501-535.
- Canakci, I. & Tumarkin, P. (2019). Bases for cluster algebras from orbifolds with one marked point. Algebraic Combinatorics 2(3): 355-365.
- Felikson, A. & Tumarkin, P. (2019). Geometry of mutation classes of rank 3 quivers. Arnold Mathematical Journal 5(1): 37–55.
- Felikson, A. & Tumarkin, P. (2018). Acyclic cluster algebras, reflection groups, and curves on a punctured disc. Advances in Mathematics 340: 855-882.
- Demonet, L., Plamondon, P.-G., Rupel, D., Stella, S. & Tumarkin, P. (2018). SL(2)-tilings do not exist in higher dimensions (mostly). Séminaire Lotharingien de Combinatoire 76: B76d.
- Felikson, A. & Tumarkin, P. (2017). Bases for cluster algebras from orbifolds. Advances in Mathematics 318: 191-232.
- Stella, S. & Tumarkin, P. (2016). Exchange relations for finite type cluster algebras with acyclic initial seed and principal coefficients. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 12: 067.
- Felikson, A. & Tumarkin, P. (2016). Coxeter groups, quiver mutations and geometric manifolds. Journal of the London Mathematical Society 94(1): 38-60.
- Felikson, A. & Tumarkin, P. (2016). Coxeter groups and their quotients arising from cluster algebras. International Mathematics Research Notices 2016(17): 5135-5186.
- Felikson, A., Fintzen, J. & Tumarkin, P. (2014). Reflection subgroups of odd-angled Coxeter groups. Journal of Combinatorial Theory, Series A 126: 92-127.
- Felikson, A., Shapiro, M., Thomas, H. & Tumarkin, P. (2014). Growth rate of cluster algebras. Proceedings of the London Mathematical Society 109(3): 653-675.
- Felikson, A. & Tumarkin, P. (2014). Essential hyperbolic Coxeter polytopes. Israel Journal of Mathematics 199(1): 113-161.
- Felikson, A., Shapiro, M. & Tumarkin, P. (2012). Cluster algebras and triangulated orbifolds. Advances in Mathematics 231(5): 2953-3002.
- Felikson, A. & Tumarkin, P. (2012). Hyperbolic subalgebras of hyperbolic Kac-Moody algebras. Transformation Groups 17(1): 87-122.
- Felikson, A., Shapiro, M. & Tumarkin, P. (2012). Cluster algebras of finite mutation type via unfoldings. International Mathematics Research Notices 2012(8): 1768-1804.
- Felikson, A., Shapiro, M. & Tumarkin, P. (2012). Skew-symmetric cluster algebras of finite mutation type. Journal of the European Mathematical Society 14(4): 1135-1180.
- Dutour Sikirić, M., Felikson, A. & Tumarkin, P. (2011). Automorphism groups of root systems matroids. European Journal of Combinatorics 32(3): 383-389.
- Felikson, A. & Tumarkin, P. (2010). Reflection subgroups of Coxeter groups. Transactions of the American Mathematical Society 362(2): 847-858.
- Felikson, A. & Tumarkin, P. (2009). Coxeter polytopes with a unique pair of non-intersecting facets. Journal of Combinatorial Theory, Series A 116(4): 875-902.
- Felikson, A. & Tumarkin, P. (2008). On hyperbolic Coxeter polytopes with mutually intersecting facets. Journal of Combinatorial Theory, Series A 115(1): 121-146.
- Felikson, A., Retakh, A. & Tumarkin, P. (2008). Regular subalgebras of affine Kac–Moody algebras. Journal of Physics A 41(36): 365204.
Supervision students
Xintong Wang
1P