Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1022
Professor Simon Gardiner
Professor
Affiliation | Telephone |
---|---|
Professor in the Department of Physics | +44 (0) 191 33 43683 |
Deputy Executive Dean (Education) in the Faculty of Science | +44 (0) 191 33 43683 |
Biography
I am originally from Hamilton, New Zealand. I initially studied Biology and Chemistry at the University of Waikato, before changing to Mathematics and Theoretical Physics,subsequently carrying out my doctoral studies in theoretical physics at the Leopold-Franzens University of Innsbruck, Austria. I then did postdoctoral work in Potsdam, Hannover, Oxford, and JILA (Colorado), before, in 2005, taking up a lectureship in the Durham University Department of Physics.
Research interests
Theoretical atomic physics, cold-atom physics, quantum nonlinear dynamics. At present, specifically, bright matter-wave solitons in attractively interacting Bose-Einstein condensates, and quantum resonance phenomena in periodically laser-pulsed clouds of cold atoms.Publications
Chapter in book
- Formation of Bose-Einstein CondensatesDavis, M., Wright, T., Gasenzer, T., Gardiner, S., & Proukakis, N. (2017). Formation of Bose-Einstein Condensates. In N. Proukakis, D. Snoke, & P. Littlewood (Eds.), Universal Themes of Bose-Einstein Condensation. (pp. 117-150). Cambridge University Press. https://doi.org/10.1017/9781316084366.009
- Selected theoretical comparisons for bosons.Proukakis, N., Davis, M., & Gardiner, S. (2013). Selected theoretical comparisons for bosons. In N. Proukakis, S. Gardiner, M. Davis, & M. Szymanska (Eds.), Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (pp. 259-286). Imperial College Press. https://doi.org/10.1142/9781848168121_0017
- Bright solitary matter waves: formation, stability and interactions.Billam, T., Marchant, A., Cornish, S., Gardiner, S., & Parker, N. (2013). Bright solitary matter waves: formation, stability and interactions. In B. Malomed (Ed.), Spontaneous Symmetry Breaking, Self-trapping and Josephson Oscillations. (pp. 403-455). Springer Verlag. https://doi.org/10.1007/978-3-642-21207-9
- Introduction to theoretical modellingDavis, M., Gardiner, S., Hanna, T., Nygaard, N., Proukakis, N., & Szymanska, M. (2013). Introduction to theoretical modelling. In N. Proukakis, S. Gardiner, M. Davis, & M. Szymanska (Eds.), Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (pp. 63-83). Imperial College Press. https://doi.org/10.1142/9781848168121_0004
- Number-conserving approaches for atomic Bose-Einstein condensates: an overview.Gardiner, S., & Billam, T. (2013). Number-conserving approaches for atomic Bose-Einstein condensates: an overview. In N. Proukakis, S. Gardiner, M. Davis, & M. Szymanska (Eds.), Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. (pp. 133-145). Imperial College Press. https://doi.org/10.1142/9781848168121_0008
Edited book
- Quantum Gases: Finite temperature and Non-Equilibrium DynamicsProukakis, N., Gardiner, S., Davis, M., & Szymanska, M. (Eds.). (2013). Quantum Gases: Finite temperature and Non-Equilibrium Dynamics. Imperial College Press.
Journal Article
- Dynamics of a helical vortex ring interacting with a vortex lineBai, W.-K., Yang, X., Zhu, H., Gardiner, S. A., Liu, W.-M., & Yang, T. (2025). Dynamics of a helical vortex ring interacting with a vortex line. Communications Physics, 8(1), Article 183. https://doi.org/10.1038/s42005-025-02109-x
- Determining the absolute number density of a thermal vapor via photon correlationsRibeiro, S., Juan-Delgado, A., & Gardiner, S. A. (2024). Determining the absolute number density of a thermal vapor via photon correlations. Physical Review A, 110(3), Article L031701. https://doi.org/10.1103/physreva.110.l031701
- Event generators for high-energy physics experimentsCampbell, J. M., Diefenthaler, M., Hobbs, T. J., Höche, S., Isaacson, J., Kling, F., Mrenna, S., Reuter, J., Alioli, S., Andersen, J. R., Andreopoulos, C., Ankowski, A. M., Aschenauer, E. C., Ashkenazi, A., Baker, M. D., Barrow, J. L., van Beekveld, M., Bewick, G., Bhattacharya, S., … Zapp, K. (2024). Event generators for high-energy physics experiments. SciPost Physics, 16(5), Article 130. https://doi.org/10.21468/scipostphys.16.5.130
- Soliton Interferometry with Very Narrow Barriers Obtained from Spatially Dependent Dressed StatesGrimshaw, C. L., Billam, T. P., & Gardiner, S. A. (2022). Soliton Interferometry with Very Narrow Barriers Obtained from Spatially Dependent Dressed States. Physical Review Letters, 129(4), Article 040401. https://doi.org/10.1103/physrevlett.129.040401
- Quantum emission of light with densely packed driven dipolesRibeiro, S., & Gardiner, S. A. (2022). Quantum emission of light with densely packed driven dipoles. Physical Review A, 105(2), Article L021701. https://doi.org/10.1103/physreva.105.l021701
- Roadmap on Atomtronics: State of the art and perspectiveAmico, L., Boshier, M., Birkl, G., Minguzzi, A., Miniatura, C., Kwek, L.-C., Aghamalyan, D., Ahufinger, V., Anderson, D., Andrei, N., Arnold, A., Baker, M., Bell, T., Bland, T., Brantut, J., Cassettari, D., Chetcuti, W., Chevy, F., Citro, R., … Yakimenko, A. (2021). Roadmap on Atomtronics: State of the art and perspective. AVS Quantum Science, 3(3), Article 039201. https://doi.org/10.1116/5.0026178
- Collective effects in the photon statistics of thermal atomic ensemblesRibeiro, S., Cutler, T. F., Adams, C. S., & Gardiner, S. A. (2021). Collective effects in the photon statistics of thermal atomic ensembles. Physical Review A, 104(1), Article 013719. https://doi.org/10.1103/physreva.104.013719
- Splitting of two-component solitary waves from collisions with narrow potential barriersGrimshaw, C. L., Gardiner, S. A., & Malomed, B. A. (2020). Splitting of two-component solitary waves from collisions with narrow potential barriers. Physical Review A, 101(4), Article 043623. https://doi.org/10.1103/physreva.101.043623
- Spin–orbit coupling in the presence of strong atomic correlationsUsui, A., Fogarty, T., Campbell, S., Gardiner, S. A., & Busch, T. (2020). Spin–orbit coupling in the presence of strong atomic correlations. New Journal of Physics, 22(1), Article 013050. https://doi.org/10.1088/1367-2630/ab6576
- Quantum and nonlinear effects in light transmitted through planar atomic arraysBettles, R. J., Lee, M. D., Gardiner, S. A., & Ruostekoski, J. (2020). Quantum and nonlinear effects in light transmitted through planar atomic arrays. Communications Physics., 3(1), Article 141. https://doi.org/10.1038/s42005-020-00404-3
- Splitting and recombination of bright-solitary-matter wavesWales, O. J., Rakonjac, A., Billam, T. P., Helm, J. L., Gardiner, S. A., & Cornish, S. L. (2020). Splitting and recombination of bright-solitary-matter waves. Communications Physics., 3, Article 51. https://doi.org/10.1038/s42005-020-0320-8
- Lattice-depth measurement using continuous grating atom diffractionBeswick, B. T., Hughes, I. G., & Gardiner, S. A. (2019). Lattice-depth measurement using continuous grating atom diffraction. Physical Review A, 100(6), Article 063629. https://doi.org/10.1103/physreva.100.063629
- An intuitive approach to structuring the three electric field components of lightMaucher, F., Skupin, S., Gardiner, S., & Hughes, I. (2019). An intuitive approach to structuring the three electric field components of light. New Journal of Physics, 21, Article 013032. https://doi.org/10.1088/1367-2630/aaf711
- Lattice-depth measurement using multipulse atom diffraction in and beyond the weakly diffracting limitBeswick, B. T., Hughes, I. G., & Gardiner, S. A. (2019). Lattice-depth measurement using multipulse atom diffraction in and beyond the weakly diffracting limit. Physical Review A, 99(1), Article 013614. https://doi.org/10.1103/physreva.99.013614
- Noise-free generation of bright matter-wave solitonsEdmonds, M., Billam, T., Gardiner, S., & Busch, T. (2018). Noise-free generation of bright matter-wave solitons. Physical Review A, 98(6), Article 063626. https://doi.org/10.1103/physreva.98.063626
- Creating Complex Optical Longitudinal Polarization StructuresMaucher, F., Skupin, S., Gardiner, S., & Hughes, I. (2018). Creating Complex Optical Longitudinal Polarization Structures. Physical Review Letters, 120(16), Article 163903. https://doi.org/10.1103/physrevlett.120.163903
- Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein CondensatesHelm, J., Billam, T., Rakonjac, A., Cornish, S., & Gardiner, S. (2018). Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates. Physical Review Letters, 120(6), Article 063201. https://doi.org/10.1103/physrevlett.120.063201
- Resonant transfer of large momenta from finite-duration pulse sequencesFekete, J., Chai, S., Gardiner, S., & Andersen, M. (2017). Resonant transfer of large momenta from finite-duration pulse sequences. Physical Review A, 95(3), Article 033601. https://doi.org/10.1103/physreva.95.033601
- epsilon-pseudoclassical model for quantum resonances in a cold dilute atomic gas periodically driven by finite-duration standing-wave laser pulsesBeswick, B., Hughes, I., Gardiner, S., Astier, H., Andersen, M., & Daszuta, B. (2016). epsilon-pseudoclassical model for quantum resonances in a cold dilute atomic gas periodically driven by finite-duration standing-wave laser pulses. Physical Review A, 94(6), Article 063604. https://doi.org/10.1103/physreva.94.063604
- Cooperative eigenmodes and scattering in one-dimensional atomic arraysBettles, R. J., Gardiner, S. A., & Adams, C. S. (2016). Cooperative eigenmodes and scattering in one-dimensional atomic arrays. Physical Review A, 94(4), Article 043844. https://doi.org/10.1103/physreva.94.043844
- Excitation of knotted vortex lines in matter wavesMaucher, F., Gardiner, S., & Hughes, I. (2016). Excitation of knotted vortex lines in matter waves. New Journal of Physics, 18(6), Article 063016. https://doi.org/10.1088/1367-2630/18/6/063016
- Enhanced optical cross section via collective coupling of atomic dipoles in a 2D arrayBettles, R. J., Gardiner, S. A., & Adams, C. S. (2016). Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array. Physical Review Letters, 116(10), Article 103602. https://doi.org/10.1103/physrevlett.116.103602
- Stochastic growth dynamics and composite defects in quenched immiscible binary condensatesLiu, I.-K., Pattinson, R., Billam, T., Gardiner, S., Cornish, S., Huang, T.-M., Lin, W.-W., Gou, S.-C., Parker, N., & Proukakis, N. (2016). Stochastic growth dynamics and composite defects in quenched immiscible binary condensates. Physical Review A, 93(2), Article 023628. https://doi.org/10.1103/physreva.93.023628
- Quantum reflection of bright solitary matter waves from a narrow attractive potentialMarchant, A., Billam, T., Yu, M., Rakonjac, A., Helm, J., Polo, J., Weiss, C., Gardiner, S., & Cornish, S. (2016). Quantum reflection of bright solitary matter waves from a narrow attractive potential. Physical Review A, 93(2), Article 021604(R). https://doi.org/10.1103/physreva.93.021604
- Measuring the disorder of vortex lattices in a Bose-Einstein condensateRakonjac, A., Marchant, A., Billam, T., Helm, J., Yu, M., Gardiner, S., & Cornish, S. (2016). Measuring the disorder of vortex lattices in a Bose-Einstein condensate. Physical Review A, 93(1), Article 013607. https://doi.org/10.1103/physreva.93.013607
- Superballistic center-of-mass motion in one-dimensional attractive Bose gases: Decoherence-induced Gaussian random walks in velocity spaceWeiss, C., Cornish, S., Gardiner, S., & Breuer, H.-P. (2016). Superballistic center-of-mass motion in one-dimensional attractive Bose gases: Decoherence-induced Gaussian random walks in velocity space. Physical Review A, 93(1), Article 103605. https://doi.org/10.1103/physreva.93.013605
- Cooperative ordering in lattices of interacting two-level dipolesBettles, R., Gardiner, S., & Adams, C. (2015). Cooperative ordering in lattices of interacting two-level dipoles. Physical Review A, 92(6), Article 063822. https://doi.org/10.1103/physreva.92.063822
- From short-time diffusive to long-time ballistic dynamics: The unusual center-of-mass motion of quantum bright solitonsWeiss, C., Gardiner, S., & Breuer, H.-P. (2015). From short-time diffusive to long-time ballistic dynamics: The unusual center-of-mass motion of quantum bright solitons. Physical Review A, 91(6), Article 063616. https://doi.org/10.1103/physreva.91.063616
- Analysis beyond the Thomas-Fermi approximation of the density profiles of a miscible two-component Bose-Einstein condensatePolo, J., Ahufinger, V., Mason, P., Sridhar, S., Billam, T., & Gardiner, S. (2015). Analysis beyond the Thomas-Fermi approximation of the density profiles of a miscible two-component Bose-Einstein condensate. Physical Review A, 91(5), Article 053626. https://doi.org/10.1103/physreva.91.053626
- Sagnac interferometry using bright matter-wave solitonsHelm, J., Cornish, S., & Gardiner, S. (2015). Sagnac interferometry using bright matter-wave solitons. Physical Review Letters, 114(13), Article 134101. https://doi.org/10.1103/physrevlett.114.134101
- Number-conserving approaches to n-component Bose-Einstein condensatesMason, P., & Gardiner, S. (2014). Number-conserving approaches to n-component Bose-Einstein condensates. Physical Review. A., 89(4), Article 043617. https://doi.org/10.1103/physreva.89.043617
- Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometryHelm, J., Rooney, S., Weiss, C., & Gardiner, S. (2014). Splitting bright matter-wave solitons on narrow potential barriers: Quantum to classical transition and applications to interferometry. Physical Review. A., 89(3), Article 033610. https://doi.org/10.1103/physreva.89.033610
- Phase-matching condition for enhanced entanglement of colliding indistinguishable quantum bright solitons in a harmonic trapHoldaway, D., Weiss, C., & Gardiner, S. (2014). Phase-matching condition for enhanced entanglement of colliding indistinguishable quantum bright solitons in a harmonic trap. Physical Review A, 89(1), Article 013611. https://doi.org/10.1103/physreva.89.013611
- Controlled formation and reflection of a bright solitary matter-waveMarchant, A., Billam, T., Wiles, T., Yu, M., Gardiner, S., & Cornish, S. (2013). Controlled formation and reflection of a bright solitary matter-wave. Nature Communications, 4, Article 1865. https://doi.org/10.1038/ncomms2893
- Collision dynamics and entanglement generation of two initially independent and indistinguishable boson pairs in one-dimensional harmonic confinementHoldaway, D., Weiss, C., & Gardiner, S. (2013). Collision dynamics and entanglement generation of two initially independent and indistinguishable boson pairs in one-dimensional harmonic confinement. Physical Review A, 87(4), Article 043632. https://doi.org/10.1103/physreva.87.043632
- Second-order number-conserving description of nonequilibrium dynamics in finite-temperature Bose-Einstein condensatesBillam, T., Mason, P., & Gardiner, S. (2013). Second-order number-conserving description of nonequilibrium dynamics in finite-temperature Bose-Einstein condensates. Physical Review A, 87(3), Article 033628. https://doi.org/10.1103/physreva.87.033628
- Tunnelling of the 3rd kind: A test of the effective non-locality of quantum field theoryGardiner, S., Gies, H., Jaeckel, J., & Wallace, C. (2013). Tunnelling of the 3rd kind: A test of the effective non-locality of quantum field theory. Europhysics Letters, 101(6), Article 61001. https://doi.org/10.1209/0295-5075/101/61001
- Equilibrium solutions for immiscible two-species Bose-Einstein condensates in perturbed harmonic trapsPattinson, R., Billam, T., Gardiner, S., McCarron, D., Cho, H., Cornish, S., Parker, N., & Proukakis, N. (2013). Equilibrium solutions for immiscible two-species Bose-Einstein condensates in perturbed harmonic traps. Physical Review A, 87(1), Article 013625. https://doi.org/10.1103/physreva.87.013625
- Bright matter-wave soliton collisions at narrow barriersHelm, J., Billam, T., & Gardiner, S. (2012). Bright matter-wave soliton collisions at narrow barriers. Physical Review A, 85(5), Article 053621. https://doi.org/10.1103/physreva.85.053621
- Quantum theory of bright matter-wave solitons in harmonic confinementHoldaway, D., Weiss, C., & Gardiner, S. (2012). Quantum theory of bright matter-wave solitons in harmonic confinement. Physical Review A, 85(5), Article 053618. https://doi.org/10.1103/physreva.85.053618
- Coherence and instability in a driven Bose–Einstein condensate: a fully dynamical number-conserving approachBillam, T., & Gardiner, S. (2012). Coherence and instability in a driven Bose–Einstein condensate: a fully dynamical number-conserving approach. New Journal of Physics, 14, Article 013038. https://doi.org/10.1088/1367-2630/14/1/013038
- Variational determination of approximate bright matter-wave soliton solutions in anisotropic trapsBillam, T., Wrathmall, S., & Gardiner, S. (2012). Variational determination of approximate bright matter-wave soliton solutions in anisotropic traps. Physical Review A, 85(1), Article 013627. https://doi.org/10.1103/physreva.85.013627
- Realizing bright-matter-wave-soliton collisions with controlled relative phaseBillam, T., Cornish, S., & Gardiner, S. (2011). Realizing bright-matter-wave-soliton collisions with controlled relative phase. Physical Review A, 83(4), Article 041602. https://doi.org/10.1103/physreva.83.041602
- Rotational response of two-component Bose-Einstein condensates in ring trapsHalkyard, P., Jones, M., & Gardiner, S. (2010). Rotational response of two-component Bose-Einstein condensates in ring traps. Physical Review A, 81(6), Article 061602. https://doi.org/10.1103/physreva.81.061602
- Conical intersections in laboratory coordinates with ultracold moleculesWallis, A. O. G., Gardiner, S. A., & Hutson, J. M. (2009). Conical intersections in laboratory coordinates with ultracold molecules. Physical Review Letters, 103(8), Article 083201. https://doi.org/10.1103/physrevlett.103.083201
- Quantum resonances in the delta-kicked harmonic oscillatorBillam, T., & Gardiner, S. (2009). Quantum resonances in the delta-kicked harmonic oscillator. Physical Review A, 80(2). https://doi.org/10.1103/physreva.80.023414
- Fractional resonances in the atom-optical delta-kicked acceleratorSaunders, M., Halkyard, P., Gardiner, S., & Challis, K. (2009). Fractional resonances in the atom-optical delta-kicked accelerator. Physical Review A, 79(2). https://doi.org/10.1103/physreva.79.023423
- Power-law behavior in the quantum-resonant evolution of the delta-kicked acceleratorHalkyard, P., Saunders, M., Gardiner, S., & Challis, K. (2008). Power-law behavior in the quantum-resonant evolution of the delta-kicked accelerator. Physical Review A, 78(6). https://doi.org/10.1103/physreva.78.063401
- Bright solitary-matter-wave collisions in a harmonic trap: Regimes of solitonlike behaviorMartin, A., Adams, C., & Gardiner, S. (2008). Bright solitary-matter-wave collisions in a harmonic trap: Regimes of solitonlike behavior. Physical Review A, 77(1). https://doi.org/10.1103/physreva.77.013620
- Manifestation of quantum resonances and antiresonances in a finite temperature dilute atomic gasSaunders, M., Halkyard, P., Challis, K., & Gardiner, S. (2007). Manifestation of quantum resonances and antiresonances in a finite temperature dilute atomic gas. Physical Review A, 76(4). https://doi.org/10.1103/physreva.76.043415
- A number-conserving approach to a minimal self-consistent treatment of condensate and non-condensate dynamics in a degenerate Bose gasGardiner, S., & Morgan, S. (2007). A number-conserving approach to a minimal self-consistent treatment of condensate and non-condensate dynamics in a degenerate Bose gas. Physical Review A, 75. https://doi.org/10.1103/physreva.75.043621
- Bright matter-wave soliton collisions in a harmonic trap : regular and chaotic dynamicsMartin, A., Adams, C., & Gardiner, S. (2007). Bright matter-wave soliton collisions in a harmonic trap : regular and chaotic dynamics. Physical Review Letters, 98(2). https://doi.org/10.1103/physrevlett.98.020402
- Quantum Accelerator Modes from the Farey TreeBuchleitner, A., d’Arcy, M., Fishman, S., Gardiner, S., Guarneri, I., Ma, Z. .-Y., Rebuzzini, L., & Summy, G. (2006). Quantum Accelerator Modes from the Farey Tree. Physical Review Letters, 96(16). https://doi.org/10.1103/physrevlett.96.164101
- Quantum random walks using quantum accelerator modesMa, Z. .-Y., Burnett, K., d’Arcy, M., & Gardiner, S. (2006). Quantum random walks using quantum accelerator modes. Physical Review A, 73(1). https://doi.org/10.1103/physreva.73.013401
- Quantum-mechanical cumulant dynamics near stable periodic orbits in phase space: Application to the classical-like dynamics of quantum accelerator modesBach, R., Burnett, K., d’Arcy, M., & Gardiner, S. (2005). Quantum-mechanical cumulant dynamics near stable periodic orbits in phase space: Application to the classical-like dynamics of quantum accelerator modes. Physical Review A, 71. https://doi.org/10.1103/physreva.71.033417
- Gravity-sensitive quantum dynamics in cold atomsMa, Z.-Y., d’Arcy, M., & Gardiner, S. (2004). Gravity-sensitive quantum dynamics in cold atoms. Physical Review Letters, 93. https://doi.org/10.1103/physrevlett.93.164101
- Adiabatic association of ultracold molecules via magnetic-field tunable interactionsGóral, K., Köhler, T., Gardiner, S., Tiesinga, E., & Julienne, P. (2004). Adiabatic association of ultracold molecules via magnetic-field tunable interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 37(17), 3457-3500. https://doi.org/10.1088/0953-4075/37/17/006
- Decoherence of Bose-Einstein condensates in microtraps.Henkel, C., & Gardiner, S. (2004). Decoherence of Bose-Einstein condensates in microtraps. Physical Review. A., 69(4). https://doi.org/10.1103/physreva.69.043602
- (De)coherence Physics With Condensates In MicrotrapsHenkel, C., Gardiner, S., & Negretti, A. (2004). (De)coherence Physics With Condensates In Microtraps. Laser Physics, 14(4), 615-620.
- Experimental observation of high-order quantum accelerator modesSchlunk, S., d’Arcy, M., Gardiner, S., & Summy, G. (2003). Experimental observation of high-order quantum accelerator modes. Physical Review Letters, 90. https://doi.org/10.1103/physrevlett.90.124102
- Signatures of Quantum Stability in a Classically Chaotic System.Schlunk, S., d’Arcy, M., Gardiner, S., Cassettari, D., Godun, R., & Summy, G. (2003). Signatures of Quantum Stability in a Classically Chaotic System. Physical Review Letters, 90(5). https://doi.org/10.1103/physrevlett.90.054101
- (Quantum) chaos in Bose-Einstein condensates.Gardiner, S. (2002). (Quantum) chaos in Bose-Einstein condensates. Journal of Modern Optics, 49(12), 1971-1977. https://doi.org/10.1080/09500340210140777
- Quantum field theory of dilute homogeneous Bose-Fermi mixtures at zero temperature: General formalism and beyond mean-field correctionsAlbus, A., Gardiner, S., Illuminati, F., & Wilkens, M. (2002). Quantum field theory of dilute homogeneous Bose-Fermi mixtures at zero temperature: General formalism and beyond mean-field corrections. Physical Review A, 65(5). https://doi.org/10.1103/physreva.65.053607
- Approaching classicality in quantum accelerator modes through decoherence.d’Arcy, M., Godun, R., Oberthaler, M., Summy, G., Burnett, K., & Gardiner, S. (2001). Approaching classicality in quantum accelerator modes through decoherence. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 64(5). https://doi.org/10.1103/physreve.64.056233
- Cavity-assisted quasiparticle damping in a Bose-Einstein condensate.Gardiner, S., Gheri, K., & Zoller, P. (2001). Cavity-assisted quasiparticle damping in a Bose-Einstein condensate. Physical Review. A., 63(5). https://doi.org/10.1103/physreva.63.051603
- Uniting Bose-Einstein Condensates in Optical Resonators.Jaksch, D., Gardiner, S., Schulze, K., Cirac, J., & Zoller, P. (2001). Uniting Bose-Einstein Condensates in Optical Resonators. Physical Review Letters, 86(21), 4733-4736. https://doi.org/10.1103/physrevlett.86.4733
- Nonlinear matter wave dynamics with a chaotic potential.Gardiner, S., Jaksch, D., Dum, R., Cirac, J., & Zoller, P. (2000). Nonlinear matter wave dynamics with a chaotic potential. Physical Review. A., 62(2). https://doi.org/10.1103/physreva.62.023612
- Quantum Chaos in an Ion Trap: The Delta-Kicked Harmonic Oscillator.Gardiner, S., Cirac, J., & Zoller, P. (1997). Quantum Chaos in an Ion Trap: The Delta-Kicked Harmonic Oscillator. Physical Review Letters, 79(24), 4790-4793. https://doi.org/10.1103/physrevlett.79.4790
- Nonclassical states and measurement of general motional observables of a trapped ion.Gardiner, S., Cirac, J., & Zoller, P. (1997). Nonclassical states and measurement of general motional observables of a trapped ion. Physical Review. A., 55(3), 1683-1694. https://doi.org/10.1103/physreva.55.1683
- Decoherence, continuous observation, and quantum computing: A cavity QED model.Pellizzari, T., Gardiner, S., Cirac, J., & Zoller, P. (1995). Decoherence, continuous observation, and quantum computing: A cavity QED model. Physical Review Letters, 75(21), 3788-3791. https://doi.org/10.1103/physrevlett.75.3788
Supervision students
Joe Bloomer
PGR Student