Staff profile
Overview
https://internal.durham.ac.uk/images/mathematical.sciences/Maths_Staff_2018/Harrap.jpeg
Stephen Harrap
Assistant Professor (Teaching)
PhD University of York

Affiliation | Room number | Telephone |
---|---|---|
Assistant Professor (Teaching) in the Department of Mathematical Sciences | MCS3096 | +44 (0) 191 33 40873 |
Research interests
- Diophantine equations, Badly approximable sets
Research groups
- Pure Mathematics: Algebra & Number Theory
Publications
Doctoral Thesis
- Harrap, S. (2011). Diophantine approximation: the twisted, weighted and mixed theories. University of York. PhD: (University of York, White Rose eThesis) 151 pages.
Journal Article
- Harrap, S., Hussain, M. & Kristensen, S. (2018). A problem in non-linear Diophantine approximation. Nonlinearity 31(5): 1734-1756.
- Badziahin, D., Harrap, S., Nesharim, E. & Simmons, D. (2018). Schmidt games and Cantor winning sets. (preprint) 36 pages.
- Badziahin, D. & Harrap, S. (2017). Cantor-winning sets and their applications. Advances in Mathematics 318: 627-677.
- Badziahin, D., Harrap, S. & Hussain, M. (2017). An Inhomogeneous Jarník type theorem for planar curves. Mathematical Proceedings of the Cambridge Philosophical Society 163(1): 47-70.
- Harrap, S. & Hussain, M. (2017). A note on badly approximabe sets in projective space. Mathematische Zeitschrift 285(1): 239-250.
- Harrap, S. & Moshchevitin, N. (2017). A note on weighted badly approximable linear forms. Glasgow Mathematical Journal 59(2): 349-357.
- Harrap, S. & Haynes, A. (2013). The mixed Littlewood conjecture for pseudo-absolute values. Mathematische Annalen 357(3): 941.
- Harrap, S. & Yusupova, T. (2013). On a mixed Khintchine problem in Diophantine approximation. Moscow Journal of Combinatorics and Number Theory 3(3-4): 75-97.
- Harrap, S. (2012). Twisted inhomogeneous Diophantine approximation and badly approximable sets. Acta Arithmetica 151(1): 55.
- Bugeaud, Y., Harrap, S., Kristensen, S. & Velani, S. (2010). On shrinking targets for ℤm actions on tori. Mathematika 56(02): 193.