Skip to main content
 

ENGI44K10: Structures 4

It is possible that changes to modules or programmes might need to be made during the academic year, in response to the impact of Covid-19 and/or any further changes in public health advice.

Type Tied
Level 4
Credits 10
Availability Available in 2023/24
Module Cap None.
Location Durham
Department Engineering

Prerequisites

Corequisites

  • As specified in programme regulations.

Excluded Combinations of Modules

  • As specified in programme regulations.

Aims

  • This module is designed solely for students studying Department of Engineering degree programmes.
  • The module will provide students with advanced knowledge and understanding of fundamentals of dynamics of structures required for earthquake engineering.
  • Students will become familiar with analysis methodologies and assessment procedures for structural design in seismic areas.

Content

  • Natural frequencies and modal analysis.
  • Dynamics of simple systems and response spectra.
  • Derivation of modal analysis in the context of seismic loads.
  • Equivalent static and push-over analyses: basic concepts and applications.
  • EC8 design procedures and key concepts.
  • Seismic lateral load resisting systems and seismic detailing.
  • Force-based and displacement-based approaches for seismic design.
  • Assessment and retrofitting of existing constructions.

Learning Outcomes

Subject-specific Knowledge:

  • An understanding of structural dynamics: basic concepts and applications.
  • An understanding of analysis techniques for structural assessment of structures subjected to earthquake loading.
  • An understanding of the EC8 framework for assessing and designing structures.

Subject-specific Skills:

  • An awareness of current technology, analysis methods and industrial practises along with the ability to apply those methods in novel situations.
  • An in-depth knowledge and understanding of specialised and advanced technical and professional skills, an ability to perform critical assessment and review and an ability to communicate the results of their own work effectively.

Key Skills:

  • Capacity for independent self-learning within the bounds of professional practice.
  • Mathematics relevant to the application of advanced engineering concepts.

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Fundamentals of earthquake engineering and the engineering practice of seismic engineering are covered in lectures, and are reinforced by problem sheets and worked examples leading to the required problem solving capability.
  • Students are able to make use of staff 'Tutorial Hours' to discuss any aspect of the module with teaching staff on a one-to-one basis. These are sign up sessions available for up to one hour per week per lecture course.
  • A single examination covers all of the lecture material. Written timed examinations are appropriate because of the wide range of analytical, in-depth material covered in this module and to demonstrate the ability to solve advanced problems independently.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures20Typically 1 per week1 Hour20 
Tutorial HoursAs requiredWeekly sign-up sessionsUp to 1 Hour10 
Preparation and Reading 70 
Total100 

Summative Assessment

Component: ExaminationComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Written Examination2 hours100 

Formative Assessment

N/A

More information

If you have a question about Durham's modular degree programmes, please visit our Help page. If you have a question about modular programmes that is not covered by the Help page, or a query about the on-line Postgraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.