Skip to main content
 

PHYS2631: THEORETICAL PHYSICS 2

Please ensure you check the module availability box for each module outline, as not all modules will run in each academic year. Each module description relates to the year indicated in the module availability box, and this may change from year to year, due to, for example: changing staff expertise, disciplinary developments, the requirements of external bodies and partners, and student feedback. Current modules are subject to change in light of the ongoing disruption caused by Covid-19.

Type Open
Level 2
Credits 20
Availability Available in 2023/24
Module Cap
Location Durham
Department Physics

Prerequisites

  • Foundations of Physics 1 (PHYS1122) AND ((Single Mathematics A (MATH1561) and Single Mathematics B (MATH1571)) OR (Calculus I (MATH1061) and Linear Algebra I (MATH1071))).

Corequisites

  • Foundations of Physics 2A (PHYS2581).

Excluded Combinations of Modules

  • Mathematical Physics II (MATH2071).

Aims

  • This module is designed primarily for students studying Department of Physics or Natural Sciences degree programmes.
  • It provides a working knowledge of classical mechanics and complements the quantum mechanics content of the module Foundations of Physics 2A by providing theoretical rigour.

Content

  • The syllabus contains:
  • Classical Mechanics: Lagrangian mechanics; Variational calculus and its application; Linear oscillators; One-dimensional systems and central forces; Noether's theorem and Hamiltonian mechanics; Theoretical mechanics; Rotating coordinate systems; Dynamics of rigid bodies; Theory of small vibrations.
  • Quantum Theory: State of a system and Dirac notation; Linear operators, eigenvalues, Hermitean operators; Expansion of eigenfunctions; Commutation relations, Heisenberg uncertainty; Unitary transforms; Matrix representations; Schrodinger equation and time evolution; Schrodinger, Heisenberg and Interaction pictures; Symmetry principles and conservation; Angular momentum (operator form); Orbital angular momentum (operator form); General angular momentum (operator form); Matrix representation of angular momentum operators; Spin angular momentum; Spin ; Pauli spin matrices; Total angular momentum; Addition of angular momentum.

Learning Outcomes

Subject-specific Knowledge:

  • Having studied this module students will have developed an appreciation of the Lagrangian and Hamiltonian formulations of classical mechanics and be able to describe the rotational motion of a rigid body.
  • They will be able to describe elements of quantum mechanics in a rigorous mathematical way and to manipulate them at the operator level.

Subject-specific Skills:

  • In addition to the acquisition of subject knowledge, students will be able to apply the principles of physics to the solution of predictable and unpredictable problems.
  • They will know how to produce a well-structured solution, with clearly-explained reasoning and appropriate presentation.

Key Skills:

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Teaching will be by lectures and tutorial-style workshops.
  • The lectures provide the means to give a concise, focused presentation of the subject matter of the module. The lecture material will be defined by, and explicitly linked to, the contents of recommended textbooks for the module, thus making clear where students can begin private study. When appropriate, the lectures will also be supported by the distribution of the written material, or by information and relevant links online.
  • Regular problem exercises and workshops will give students the chance to develop their theoretical understanding and problem solving skills.
  • Students will be able to obtain further help in their studies by approaching their lecturers, either after lectures or at other mutually convenient times.
  • Student performance will be summatively assessed through an open-book examination and formatively assessed through problem exercises and a progress test. The open-book examination will provide the means for students to demonstrate the acquisition of subject knowledge and the development of their problem-solving skills. The problem exercises, progress test and workshops will provide opportunities for feedback, for students to gauge their progress and for staff to monitor progress throughout the duration of the module.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures402 per week1 hour40 
Workshops18Weekly1 hour18 
Preparation and Reading142 
TOTAL200 

Summative Assessment

Component: Open-book examinationComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Open-book examination 100 

Formative Assessment

Problem exercises and self-assessment; progress test, workshops (not compulsory) and problems solved therein.

More information

If you have a question about Durham's modular degree programmes, please visit our FAQ webpages, Help page or our glossary of terms. If you have a question about modular programmes that is not covered by the FAQ, or a query about the on-line Undergraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.